
SoK: Hardening Techniques in the Mobile Ecosystem — Are We There Yet?

Magdalena Steinböck
TU Wien

magdalena.steinboeck@seclab.wien

Jens Troost
VU Amsterdam
j.e.troost@vu.nl

Wilco van Beijnum
University of Twente

wilcovanbeijnum@gmail.com

Jan Seredynski
VU Amsterdam

janseredynski@gmail.com

Herbert Bos
VU Amsterdam
h.j.bos@vu.nl

Martina Lindorfer
TU Wien

martina@seclab.wien

Andrea Continella
University of Twente

a.continella@utwente.nl

Abstract—Irrespective of the security and isolation guaran-
tees offered by the mobile operating system, the Mobile
Application Security Verification Standard (MASVS) rec-
ommends app developers to implement hardening techniques
for self -protection—to prevent tampering and leakage, detect
jailbreaks, etc. Despite regulations incentivize developers to-
ward implementing self-protection, our understanding of the
use of hardening techniques is still very limited—especially
regarding differences, if any, between the two main mobile
ecosystems. In this paper, we systematize knowledge on the
use and analysis of hardening techniques, covering, for the
first time, both Android and iOS apps.

To this end, we present HALY, a framework to analyze
the adoption of hardening techniques. Using HALY’s static
and dynamic analysis, we analyze 2,646 popular apps avail-
able on both Android and iOS, and measure the prevalence
of hardening techniques. Contrary to expectation, apps on
iOS underperform in self-protection, implementing only half
of the recommended hardening techniques compared to
their Android counterparts—challenging the long-held belief
that iOS is simply “more secure.” Equally surprising, while
privacy-sensitive apps implement more self-protection, many
apps implement hardening techniques on only one of the two
OSes. Furthermore, as many common techniques are easy to
individually bypass, the additional security is questionable.
Overall, almost all apps implement some hardening tech-
niques, but as many as 24.1% (Android) and 73.6% (iOS)
implement fewer than half of the recommended ones, and we
only found 26 apps on Android to implement all eight and
only one app on iOS adopt all seven analyzed techniques.

1. Introduction

As smartphones routinely handle our most sensitive
data, there is a growing threat of attacks that bypass the
system’s isolation and sandboxing mechanisms meant to
prevent malicious apps from accessing the data of other
apps—for instance by rooting or jailbreaking the device.
Such attacks target not just the confidentiality of data, but
may also threaten an app’s integrity, as exemplified by the
popularity of cheating frameworks in mobile games [79].
In addition, security-sensitive apps, such as banking and
shopping apps, are valuable targets for such attacks due
to their finance-related nature [98].

In response, many apps rely on Runtime App Self-
Protection (RASP), to hinder reverse engineering, debug-
ging, and tampering. In particular, the Mobile Applica-
tion Security Verification Standard (MASVS) [60], pub-
lished by OWASP, specifies multiple hardening techniques
that apps are recommended to implement (MASVS-
RESILIENCE) and defined a corresponding testing profile
(R) for security verification. Also, new regulations regard-
ing IT security in the EU and elsewhere now require
developers to implement adequate (self-)protection. One
such regulation, the EU Digital Operational Resilience Act
(DORA) [21], enforced from January 2025, prescribes op-
erational resilience testing of all ICT systems for financial
entities. Hence, one expects financial apps to implement
self-protection to comply with DORA.1

On the surface, these are positive developments. Reg-
ulations and recommendations serve as powerful incen-
tives to persuade developers to implement hardening tech-
niques. Moreover, compliance reassures developers that
their apps meet security standards and are less likely to
face legal claims, though vulnerabilities may still exist
despite adherence to standards [54].

The questions are, first, if and which type of these
techniques are actually used, second, if there are differ-
ences between Android and iOS, and third, if the ap-
parent faith in today’s hardening techniques is justified.
OWASP [63] showed that many techniques are easy to
bypass, giving developers and users a false sense of secu-
rity, known as “security theater” [77].

Unfortunately, despite several studies investigating
specific characteristics of self-protection (see Table 1),
our community still lacks a comprehensive, yet in-depth,
understanding of the hardening techniques, their adoption
across the mobile ecosystems, and the suitable approaches
to track them. A crucial gap in our knowledge concerns the
differences, if any, between Android and iOS: is hardening
more common on one of these platforms, are the most
common techniques the same, and are there differences
between the same apps on Android and iOS? Analyzing
all recommended hardening techniques on 2,646 apps
available on both platforms, this paper is the first to
provide a comparative analysis of the two ecosystems with
empirical evidence to answer these questions.

1. Similarly, the EU Cyber Resilience Act (CRA) [20], enforced in
2027, legally defines security requirements for hardware and software.

TABLE 1: Classes of hardening techniques and state-of-the-art approaches to identify their adoption (* Android only).

AppJitsu [98] Pradeep et
al. [68]

Kellner et
al. [45]

Ibrahim et
al. [42]

Evans et
al. [28]

Reaves et
al. [71]

Ruggia et
al. [75]

HALY

Analysis type Dynamic Static &
Dynamic

Static &
Dynamic

Static &
Dynamic

Static &
Dynamic

Static Dynamic Static &
Dynamic

OS support ð ð & ð ð ð ð ð &

Total number of apps 455 5,079 3,482 163,773 35 46 41,710 5,292
Benign 100% 100% 100% 100% 100% 100% 50.72% 100%
Anti-tampering / Ë é é Ë é é Ë Ë

Hooking detection / � Ë é é é é é Ë Ë

Debug detection � Ë é é é é é Ë Ë

Emulation detection � Ë é é é é é Ë Ë

Root/Jailbreak detection � Ë é Ë é Ë é Ë Ë

Keylogger protection é é é é é é é Ë

Screenreader protection é é é é é é é Ë*
Secure connections é Ë é é é Ë Ë Ë

Unlike existing work that examines hardening through
a narrow lens (specific techniques [28], [42], [45], [68],
specific apps [16], [71], or specific platforms [75], [98]),
we cast our net wide and, especially, focus on both
Android and iOS. Our study includes all access-related
hardening techniques that prevent attacks at run time
(e.g., detection of jailbreaks, or hooking) described in the
literature. We categorize them into a taxonomy based on
whether they protect the app’s integrity, against threats
from the run-time environment, or protect input/output
(I/O) channels. This means that code transformation such
as encryption and obfuscation, which form a separate
field of study, are out of scope. It is also not our goal
to analyze the implementation of such techniques (which
is done elsewhere [80]) or to research new techniques
against next-generation attacks based on side channels or
hardware bugs. Similarly, our analysis focuses on benign
apps. Li et al. [48] have shown that benign apps implement
significantly more evasion techniques than malicious apps.
We do include a case study on malware for completeness.

We present an automated HArdening anaLYzer, HALY,
which tracks the implementation and adoption of these
techniques, using both static and dynamic analysis. Using
HALY, we successfully analyze a large dataset of more
than 2,646 cross-platform [83] apps on each platform. Our
empirical results yield important insights and challenge
long-held beliefs. First, contrary to initial expectations,
apps on iOS underperform in self-protection, implement-
ing roughly half as many techniques as found in their An-
droid counterparts. Second, we find that many of the most
common techniques are easy to circumvent. Additionally,
while most self-protection measures in popular apps are
easy to analyze, this is not the case for more sophisticated
schemes that marry hardening with code transformation—
here, more research is needed. Finally, we show that the
use of hardening techniques differs among app categories,
that security-sensitive apps implement more techniques,
and that there are remarkable inconsistencies between
different versions of the same app, as we detect self-
protections in many apps on only one OS. Overall, our
results suggest that 0.2% (Android) and 1.4% (iOS) of
the apps do not implement any of the recommended
mechanisms, 75.9% and 51.5% at least 3, and only 26
apps (Android) and 1 app (iOS) adopt all.2

2. These results are lower bounds, as we tuned our approach to
minimize false positives, even at the cost of possible false negatives
(e.g., due to custom techniques or high-level protections).

In summary, we make the following contributions:
• We survey and systematize self-protection techniques

on Android & iOS according to our taxonomy.
• We present HALY, a tool to track adoption of hard-

ening techniques and study their use in 2,646 apps
available on both platforms, highlighting differences.

• We present insights (affecting users, developers, and
researchers) about the state of mobile self-protection.
We identify areas for further research and question
the overall security of today’s apps.

Availability. Dataset, results, and code are available at
https://github.com/utwente-scs/haly-hardening-analyzer.

2. Hardening Against Run-time Threats

2.1. Threat Model

We assume attackers try to analyze or manipulate an
app on a compromised device. Developers use hardening
techniques to protect the app’s data even on such devices,
but also to comply with legislation. For example, apps
often include intellectual property (IP) such as music
or movies that, in the absence of sufficient protection,
attackers may extract without a license. Similarly, with-
out adequate run-time protections in mobile games and
finance apps, users can cheat or purchase in-app currency
without payment, and attackers can leak sensitive finan-
cial details. To comply with legislation such as GDPR,
developers need to ensure the protection of sensitive user
data at all times. On a jailbroken device, system-wide
security features can be disabled, putting user data at risk
of theft from malicious actors. Hence, apps need sufficient
protection mechanisms to ensure security and privacy of
their user’s data and prevent data leakage even on compro-
mised devices. In particular, we assume attackers pursue
their malicious purposes by attempting to compromise the
target app’s integrity, environment, or data (I/O).

2.2. Hardening Techniques

OWASP’s Mobile Application Security Verification
Standard (MASVS) [60] lists requirements for apps to
implement and the Mobile Application Security Testing
Guide (MASTG) [63] provides guidance on how to test
their implementation. MASVS is also the standard An-
droid apps are tested against in case apps opt for the

https://github.com/utwente-scs/haly-hardening-analyzer

Hardening Techniques against Runtime Threats

 Environment protection I/O protection

Anti-
tampering

Debug
detection

Emulation
detection

Root
detection

Keylogger
protection

Screenreader
protection

Certificate
pinning

Hooking
detection

 Integrity protection

Figure 1: A taxonomy of hardening techniques protecting mobile apps from run-time threats.

independent security review reflected in Google Play’s
data safety section [35]. In addition, related work has stud-
ied the prevalence of selected hardening techniques [28],
[45], [68], [71], [75], [98], as well as further highlighted
additional techniques, together with their impact, that
can compromise the overall run-time security of mobile
apps [5], [18], [30], [44], [49], [51]. Based on our review
of these sources we collected eight highly relevant types
of app hardening techniques (or “RASPs”) (see Table 1).
The OWASP MASVS dedicates a whole section to the
resilience of apps in regards to different approaches to
defense-in-depth. It presents four categories: Resilience 1
(integrity validation of the platform), Resilience 2 (anti-
tampering mechanisms), Resilience 3 (anti-static analysis
mechanisms), and Resilience 4 (anti-dynamic analysis
mechanisms). In our framework, we detect three resilience
categories, i.e., Resilience 1 (root, emulation, screenshot,
and keylogger detection), Resilience 2 (tamper detection
and certificate pinning), and Resilience 4 (debug and
hooking detection). We did not include Resilience 3, as
it discusses code transformation techniques such as ob-
fuscation. These target static analysis only and form their
own field of studies – hence, they are out-of-scope for this
work. However, we perform an analysis of packers present
in our Android dataset, which can indicate the presence
of code-transformation techniques.

Following our threat model, as a first step in system-
atization, we classify them into three broad categories (see
Figure 1): (1) integrity protection (anti-tampering such as
integrity checks, signing, hooking manipulations), (2) en-
vironment protection (detection of hooking, debugging,
emulation, jailbreaks), (3) I/O protection (keylogger and
screen reading protection, certificate pinning).
Integrity: anti-tampering protection. Even on a non-
instrumented device, attackers can decompile, modify, and
recompile apps to inject malicious behavior or disable
security mechanisms, and then can spread their apps via
alternative app stores. Especially on Android, app re-
packaging is easy to implement. To mitigate this threat,
apps should adopt anti-tampering techniques, e.g., through
integrity checks and signing [42], [60], [75], [98].
Integrity & Environment: hooking detection. Attackers
alter the behavior of apps with hooking frameworks such
as Frida [88], Cydia Substrate [76], or Xposed [74]. By
hooking functions or system calls (syscalls), they read
and modify parameters and return values, or even replace
functions. Apps should therefore look for signs of hook-
ing [60], [75], [98].
Environment: debug detection. Attackers often attach
debuggers to reverse engineer apps. Native debugging may
use tools such as ptrace, while Android also supports
debugging of Java apps using the Java Debug Wire Proto-

col (JDWP) [80]. As a mitigation, apps should detect and
block known debug methods [60], [75], [98].
Environment: emulation detection. As attackers simi-
larly use emulators for reverse engineering, apps should
implement checks for artifacts (e.g., differences in hard-
ware and software configurations) that indicate the pres-
ence of an emulator [43], [50], [52], [60], [75], [89], [98].
Environment: root and jailbreak detection. Rooting
Android devices or jailbreaking iOS devices weakens
their security, as it allows apps to break out of their
sandboxed environment and access data belonging to other
apps. Also, attackers use jailbreaks to bypass an app’s
restrictions, e.g., to unlock paid content. Thus, apps should
verify if the device is rooted or jailbroken [28], [45], [60],
[75], [84], [98].
I/O: keylogger protection. As malicious keyboards
can serve as keyloggers and collect all typed inputs,
apps should use a custom virtual keyboard for sensitive
fields [18], [44], [49].
I/O: screenreader protection. Attackers can obtain sen-
sitive information by using a malicious app that captures
or records the screen. To prevent sensitive data from
being exposed, apps should detect screenreaders and block
screen captures [5], [30], [44], [49], [51].
I/O: secure connections. Finally, a Machine-in-the-
Middle (MitM) attack may intercept an app’s network
traffic to steal credentials, session tokens or other in-
formation. To prevent this, apps should adopt encrypted
protocols (i.e., TLS) and consider implementing certificate
pinning—including the certificate (hash) of the trusted
backend in their code [8], [19], [29], [60], [68], [71], [75].

3. HALY: Framework Design

To further systematize the use of these techniques,
HALY unifies the analysis of Android and iOS apps to
track the hardening techniques discussed in Section 2—
using static analysis to track techniques that only trigger
under specific constraints, hard to satisfy at run time,
and dynamic analysis to handle cases that static analysis
cannot (e.g., obfuscated apps), and validate its results
(mitigating false positives). For fair comparison, we im-
plement the same detectors for both platforms. Overall,
HALY consists of five stages (see Figure 2), mirrored for
both platforms: pre-processing; static analysis; dynamic
analysis; technique tracking; and post-processing.

3.1. Pre-processing

HALY first downloads the target app from its respec-
tive store, using gplay-downloader [11] for the Google

Post-processingTechnique DetectionHALY
APK

IPA

Pre-processing

Decryption

Decompilation

Run Application
Dump iPhone

Memory

Indexing

File indexing

String extraction

Static analysis
Manifest parsing

Callgraph building

Dynamic analysis
Instrumentation

Function tracing

3rd-party library
detection

Results collection
Technique Tracking & countermeasure

Figure 2: System overview of HALY. Our approach follows the stages in Section 3 for both Android and iOS.

Play Store and IPATool [6] for the Apple App Store,
and additionally collects metadata, such as the app’s cat-
egory in the store. HALY then pre-processes the apps for
analysis. It disassembles Android apps into their smali
code using apktool [87]. For iOS apps, encrypted by
default, it installs and runs them on a real device, and
then, using Frida [88], dumps their decrypted binary from
memory at run time. Finally, HALY extracts and indexes
all strings from binaries—to use later for searching for
specific artifacts (e.g., of hooking frameworks).

3.2. Static Analysis

Next, HALY statically disassembles the app’s code and
identifies functions, relying on Radare2 [69] to build a
callgraph and find method calls in native binaries. We also
use Radare2 to identify supervisor call (SVC) instructions.
Apps can use SVC instructions to directly invoke syscalls
from native code, bypassing the interception of hooking
frameworks. In addition, HALY uses Code Search [38]
to find occurrence of specific strings, such as file or
app names, as well as to detect Java method calls in
the smali code of Android apps. Finally, we parse the
AndroidManifest.xml file in Android apps and the
Info.plist file in iOS apps to extract metadata, such
as the app name, versions, and requested permissions.

3.3. Dynamic Analysis

During dynamic analysis, HALY uses Frida to hook
into various methods and syscalls. For some syscalls and
methods, it additionally modifies the arguments or return
values to hide from the app that the device is rooted/-
jailbroken and running instrumentation software. We also
hook the addresses of the SVC instructions identified dur-
ing static analysis and look up the corresponding syscalls
by looking up the SVC instruction number and process
them in the same way as ‘normal’ syscalls. Unfortunately,
relying solely on the invoked functions to track hardening
techniques means that we cannot track variables, such as
the Build.MODEL variable which some Android apps
use to check if they run on an emulator. To the best
of our knowledge, Frida cannot track run-time accesses
to these variables, or to what values they are compared.
Fortunately, we do track their usage during static analysis.

3.4. Tracking Hardening Techniques

On top of the static and dynamic analyses, HALY pro-
vides modular detectors, each of which is responsible for
tracking a specific hardening technique. They collectively
represent most, if not all, state-of-the-art techniques for

detecting self-protection on both platforms based on our
literature review (see Section 2.2). Where possible, we
also implement generic countermeasures (see Section 3.3),
to ensure that apps do not terminate as soon as root or
instrumentation is detected.

Some of the techniques below may serve more than
one purpose. For instance, detecting the Cydia Substrate
framework [76] can be an indicator for hooking detection
but also for root detection, as the framework can only
be installed on rooted devices. However, our taxonomy
takes this into consideration and thus, the detection of
Cydia Substrate counts towards both integrity protection
and environment protection. Hence, numbers regarding
our classification may not add up to 100%.

Integrity: anti-tampering protection. On Android,
HALY traces functions related to retrieving and validating
app signatures and the usage of the (now deprecated)
SafetyNet API [36] or Play Integrity API [34] (its succes-
sor, introduced in 2022 [32]). These APIs check device
integrity, including emulator detection, and apps invoking
them are classified as implementing anti-tampering, as
well as root, hooking, and emulation detection.

On iOS, one cannot check the signature of an app
directly. All apps from the App Store are re-signed with
Apple’s signature, and iOS devices only allow execution
of Apple-signed binaries, unless the check is disabled
by a jailbreak. However, apps could be re-signed and
executed on a jailbroken device, which is why apps could
test whether an embedded.mobileprovision file is
present [91]. Apple does provide an App Attest Service
though to verify apps are unmodified [9] and HALY de-
tects the usage of this service.

Integrity & Environment: hooking detection. HALY
first checks for the detection of hooking frameworks, such
as Xposed [74], Cydia Substrate [76], and Frida [88],
using static analysis, by scanning for the names of these
frameworks or related apps in the app’s code or text files.
During dynamic analysis, HALY tracks if the app attempts
to access files related to them, or checks whether apps
related to these frameworks are installed. Since jailbreaks
almost always come with Cydia Substrate (or “tweak”)
support, the distinction between hooking and root detec-
tion on iOS is blurry. We therefore classify any mention
of “substrate” as hooking detection and any other checks
related to Cydia as root detection. Apps on iOS can also
use _dyld_get_image_name() [63] to see if any
modules related to hooking frameworks are loaded.

Environment: debug detection. On iOS, programs can
use the syscalls ptrace and sysctl to check if the app
is being traced. Further, they can use getppid to validate
the PID of the parent process, which should be 1 if the

app is started by the launcher. HALY looks for and hooks
these syscalls to monitor their use. On Android, HALY
also looks for ptrace, in addition to Java methods such
as Debug.isDebuggerConnected().

Environment: emulation detection. On iOS, an app
can inspect environment variables to test whether it
is running on an emulator or simulator. For ex-
ample, the iOS simulator contains the environment
variable SIMULATOR_MAINSCREEN_WIDTH and the
Corellium emulator loads the environment variable
SANDBOX_TOKENS. On Android, an app can use various
variables from the Build class such as Build.MODEL
to understand whether it is running on an emulator. An app
can also check if certain files that are only present on an
emulator exist, such as /Applications/Xcode.app
on an iOS simulator or /dev/socket/genyd on a
Genymotion Android emulator. HALY tracks the usage of
all these variables and files.

Environment: root and jailbreak detection. Apps may
check for the presence of certain files not present on
stock devices, or file/directory permissions different from
those on unmodified devices. During static analysis, HALY
checks if the app contains any mention of these filesystem
artifacts, and during dynamic analysis, HALY hooks file
access syscalls to track them. Some apps also check if
other apps related to rooting/jailbreaking are installed.
During static analysis, HALY looks for mentions of these
apps, and during dynamic analysis, tracks requests for
information about these apps by hooking openURL()
and canOpenURL() on iOS, and hooking methods of
the PackageManager and Intent classes on Android.

I/O: keylogger detection. To prevent keylogging, apps
can show their own keyboard at input fields, or check
if the active keyboard is part of an allowlist. HALY
tracks the usage of functions related to hiding the system
keyboard from an input field and functions for getting the
active keyboard—on Android: EditText.setShow
SoftInputOnFocus(), InputMethodManager.
getEnabledInputMethodList(); on iOS with:
UIView.inputView(), and UIResponder.text
InputMode().

I/O: screenreader detection. Bar unreliable
workarounds, on iOS, there is no method to block
screenshots or recordings. On Android, an app can set any
of its components as “secure” to block screenshots. HALY
checks for this using SurfaceView.setSecure()
or Window.setFlags() [63].

I/O: secure connections. During static analysis, HALY
uses a methodology similar to that of Pradeep et al. [68]
to detect certificate pinning by checking for the inclusion
of certificates or their hashes in the app. During dynamic
analysis, it tracks the usage of known pinning functions
of popular libraries. Furthermore, it intercepts all network
traffic during the dynamic analysis of the app.

3.5. Post-processing

At the end of the analysis, HALY aggregates all results,
and extracts the following additional pieces of information
to put the results into context:

App categories and permissions. We correlate the adop-
tion of hardening techniques to the app’s category (accord-
ing to the app store metadata), as well as their requested
privacy- and security-sensitive permissions.
First-party vs. third-party. We classify hardening tech-
niques as first-party or third-party implementations by
first identifying all third-party libraries. In particular, we
categorize any library that is present in at least n apps
as a third-party dependency. In our analysis, we used
n = 5, which should be sufficiently conservative. We
chose this threshold as there may be apps from the same
developer sharing parts of their implementation. For native
libraries, we use their file name as an identifier for the
process, while we use the code path for Java libraries (e.g.,
com.google.android.gms). As further discussed in
Section 7, HALY might miss third-party libraries if they
obfuscate their names or code paths or occur fewer than
n times. Finally, we verify whether the identified third-
party libraries implement any of the tracked hardening
techniques by analyzing the stack trace during dynamic
analysis. After filtering out all system libraries in the
stacktrace, we select the top item in the stacktrace as
the source of the hardening technique. This allows us to
distinguish between hardening techniques implemented by
developers and those provided by third-party libraries.
Confidence measure & usefulness. Finally, our tool as-
signs a confidence score to every finding, allowing users to
assess the reliability of the detected hardening techniques.
The confidence score for each finding is assessed based on
its potential alternative use cases—of which we manually
verified that they positively help identify the hardening
technique, e.g., in root detection, searching for a specific
jailbreak name is a strong indicator, whereas calling fork
may serve other purposes as well. Further, HALY provides
metadata for each finding – for static findings, we include
details such as the source, offsets, and function names,
and for dynamic findings we include backtraces, argument
values, and contextual information. While our approach
prioritizes confident findings to maintain a conservative
detection strategy, it is possible to use a more permissive
setting to increase detections at the risk of higher false
positives. We do not differentiate whether the confident
detection was obtained during static and dynamic analysis,
meaning that if a method is confidently detected only
in one analysis method, we still count it as detection of
the hardening technique. As we aimed to minimize false
positives, we only take into account confident detections
and our results should be interpreted as a lower bound.

4. Framework Validation

In this section, we validate the HALY framework
by assessing its accuracy on ground truth datasets and
comparing the results to the well-known Mobile Security
Framework (MobSF) [3].
Experimental setup. For our Android experiments, we
use a Pixel 3 running Android 12 (released in October
2021), which we root by installing APatch [14]. APatch
is running kernel patch version 0.10.5. For the emulator,
we use Android 11 with Google APIs, version 30, the
latest version of the Android Emulator that supports ARM
on x86. For both the rooted device and the emulator, we

install frida-server. Additionally, we applied anti-
detection patches for improved stability on the rooted
phone [41]. For iOS, we use an iPhone 8 running iOS
16.4.1 (released in March 2023), which we jailbreak using
the rootful palera1n jailbreak [64], install the Sileo pack-
age manager [81] and use it to install frida-server.

For the dynamic analysis, we start a proxy (Squid [82]
for Android and mitmproxy [25] for iOS) on our machine,
and configure the devices to use the proxy using WiFi-
hotspots and tap interfaces to intercept the network traffic
at run time. We collect traffic using tcpdump with a filter
on the IP address of the devices.

We set a 10-minute timeout and an 8 GB memory limit
per file for static analysis. Since benign apps execute hard-
ening techniques (detection of rooting/jailbreaks, hooking,
debugging, emulation, etc.) early in the execution, we
use a one-minute timeout for dynamic analysis, which is
in line with other work on dynamic analysis of benign
apps [46]. Ruggia et al. [75] found that benign apps mostly
performed environment checks very early in the execu-
tion (at <10% into their four minute execution). Further,
Pradeep et al. [68] found that most TLS connections are
established within 30 seconds from startup.
Ground truth. To validate HALY’s results and errors,
we first develop proof-of-concept Android and iOS apps
(part of our artifact) that (a) implement no hardening
techniques, as well as apps that (b) trigger all the studied
hardening techniques, and verify that HALY produces
correct results in both scenarios.

Next, we validate HALY against 5 open-source An-
droid apps, notably four levels of OWASP Crackme
apps [61], and the proof-of-concept app that implements
multiple different evasion strategies by Ruggie et al. [75].
Similarly, to validate our iOS analysis, we use the two
available OWASP Crackmes [62] for iOS, iGoat [95], as
well as the sample apps from the SDKs FreeRASP [86]
and the library IOSSecuritySuite [73], which both provide
hardening techniques for iOS apps. Table 2a presents our
Android evaluation results, while Table 2b covers iOS.
During static analysis, HALY correctly identifies 95.0%
of the implemented RASPs of our validation dataset on
Android, and 76.3% on iOS. When also considering dy-
namic results, HALY correctly identifies 95.0% of the im-
plemented RASPs in our Android validation dataset on an
emulator, 90.0% on a rooted Android device, and 92.3%
on iOS. In our experiments, we only encountered two false
positives on Android on a rooted device. False negatives
are expected in cases where developers implement custom
security solutions or use techniques that serve multiple
purposes beyond hardening. For instance, the emulation
detection of all undetected iOS apps is implemented by
retrieving all environment variables. While HALY detects
this process, it does not classify it as confident, as the same
approach can be used for, e.g., testing purposes [67].

Additionally, we ran HALY on 15 highly security-
sensitive Android apps that implement sophisticated self-
protection, which have been provided and manually ana-
lyzed by our industry partner Keysight Riscure Security
Solutions [1] specifically for that purpose. These apps
are known to implement hardening techniques, and make
use of obfuscators, packers, and a host of other software
protection tools (SPTs). Of the 15 apps, 14 completed
static analysis, and only 4 completed dynamic analysis.

Static analysis is shown to be affected by these SPTs,
having an accuracy of 38.8%. Of the 4 apps that completed
dynamic analysis, HALY correctly identified 54.7% of the
implemented RASPs. Similarly to the OWASP Crackme
apps, most errors were false negatives (62%). These can
be expected in this set of apps, due to the high level of
protections used, and some apps require interaction with
the app to trigger certain checks. These results suggest
that combining hardening techniques with other protec-
tive measures significantly raises the bar for automated
analysis. Sections 5.4 and 7 elaborate on these findings.

Comparison to MobSF. To demonstrate the effectiveness
of HALY, we evaluated our ground truth with MobSF [3]
and compare its findings to our tool’s results. MobSF
detects hardening techniques by using regex-based pat-
tern matching via libsast [2]. While our framework also
utilizes pattern matching during static analysis, it further
observes the behavior of apps during runtime and monitors
function/API calls. As static analysis is undecidable, many
cases can only be handled using dynamic analysis. Also,
MobSF’s dynamic analysis for iOS apps is limited to
Corellium VM [24], a closed source and paid service
provider, whereas HALY supports dynamic analysis on any
jailbreakable iOS device. For Android, MobSF correctly
identified root detection in all five apps, and certificate
pinning in one app (out of two). However, it did not detect
other hardening techniques, leading to a high amount of
false negatives and a false negative rate (FNR) of 68%.
For our iOS apps, MobSF did not detect any hardening
technique, resulting in a FNR of 100%.

Case study: malware. To understand the effect malicious
applications have on HALY, we analyzed a small dataset
of 10 malware samples we obtained from AndroZoo [7].
These samples were classified with AVClass2 [78] as be-
longing to four different families: necro, joker, spyagent,
and smsthief. Wang et al. [90] analyzed the behaviour of
these families in depth—providing ground truth for our
validation. We selected these families manually with the
goal to have a variety of evasive techniques and minimize
the risks of the malware.

Two families, necro and joker, are known to employ
obfuscation and packing, along with other environmental
evasive techniques. Meanwhile, spyagent and smsthief, do
not use obfuscation or packers. Smsthief does not perform
any environment checks or other evasive techniques, while
spyagent performs environmental checks.

The setup for this case study was limited to an em-
ulator, to avoid the issue of persistence. A list of MD5
hashes of the samples as well as our results can be found
in Table 12 (in the Appendix). HALY was successful in
detecting hardening techniques for five of the malware
samples with static analysis, and three with dynamic
analysis. Regarding the quality of the detections, static
analysis yielded many confident environmental checks for
joker and spyagent samples, as expected. In contrast, sm-
sthief samples showed no confident detections, with only
one unconfident anti-debug detection, which aligns with
expectations. For the necro samples HALY was unsuccess-
ful in detecting any hardening technique, both during static
and dynamic analysis. This family shows the limitations
of HALY in the face of obfuscation and packers, along
with emulation detection, discussed further in Section 7.

TABLE 2: Ground truth evaluation results on Android and iOS. TP = true positive, FP = false positive, TN = true
negative, FN = false negative, ACC = accuracy, PRE = precision, FPR = false positive rate, FNR = false negative rate.
+ indicates results from dynamic analysis on an emulator, while * denotes a jailbroken physical device.

(a) Results of our ground truth analysis for Android (5 apps).
ð Static Analysis Dynamic Analysis Total

TP FP TN FN TP+ FP+ TN+ FN+ TP* FP* TN* FN* TP FP TN FN ACC PRE FPR FNR
Anti-Debugging 5 0 0 0 3 0 0 2 3 0 0 2 5 0 0 0 1.00 1.00 – 0.00
Anti-Tampering 2 0 2 1 1 0 2 2 1 0 2 2 2 0 2 1 0.80 1.00 0.00 0.33
Anti-Hooking 3 0 2 0 2 0 2 1 3 2 0 0 3 2 0 0 0.60 0.80 1.00 0.00
Anti-Emulator 1 0 4 0 1 0 4 0 1 0 4 0 1 0 4 0 1.00 1.00 0.00 0.00
Anti-Root 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 1.00 1.00 – 0.00
Anti-Keylogger 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 1.00 – 0.00 –
Anti-Screenreader 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 1.00 – 0.00 –
Cert. Pinning 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 0.80 1.00 0.00 0.50
Total (%) 42.5 0.0 52.5 5.0 32.5 0.0 52.5 15.0 35.0 5.0 0.0 12.5 42.5 5.0 47.5 5.0

(b) Results of our ground truth analysis for iOS (5 apps).
 Static Analysis Dynamic Analysis Total

TP FP TN FN TP* FP* TN* FN* TP FP TN FN ACC PRE FPR FNR
Anti-Debugging 2 0 2 1 3 0 2 0 3 0 2 0 1.00 1.00 0.00 0.00
Anti-Tampering 0 0 2 3 3 0 2 0 3 0 2 0 1.00 – 0.00 0.00
Anti-Hooking 1 0 2 2 3 0 2 0 3 0 2 0 1.00 1.00 0.00 0.00
Anti-Emulator 0 0 1 3 0 0 2 3 0 0 2 3 0.40 – 0.00 1.00
Anti-Root 3 0 1 0 3 0 1 1 3 0 1 0 1.00 1.00 0.00 0.00
Anti-Keylogger 0 0 5 0 0 0 5 0 0 0 5 0 1.00 – 0.00 –
Anti-Screenreader 0 0 5 0 0 0 5 0 0 0 5 0 1.00 – 0.00 –
Cert. Pinning 1 0 4 0 0 0 4 1 1 0 4 0 1.00 1.00 0.00 0.00
Total (%) 18.4 0.0 57.9 23.7 30.0 0.0 57.5 12.5 33.3 0.0 59.0 7.7

TABLE 3: Number and percentage of apps using each hardening technique, detected via static and dynamic analysis on
rooted devices and an emulator. Brackets indicate low-confidence detections. Screenreader protection is Android-only.
Most techniques are more common on Android, where nearly all apps use anti-debugging, emulation, and root detection.
On iOS, root detection is the most widely used. We also show how many apps use at least one technique per category.

ð
Static Analysis Dynamic Analysis Static Analysis Dynamic Analysis

Rooted Emulator
Anti-Tampering / 589 (22.26%)

[2,048 (77.40%)]
1 (0.04%)

[2,339 (88.40%)]
1 (0.04%)

[2,300 (86.92%)]
108 (4.08%)

[0]
872 (33.0%)

[0]
Hooking Detection / � 1,419 (53.63%)

[0]
118 (4.46%)

[2,514 (95.01%)]
69 (2.61%)

[2,065 (78.04%)]
399 (15.08%)

[2,140 (80.88%)]
524 (19.80%)

[1,994 (75.36%)]
Debug Detection � 2,470 (93.35%)

[173 (6.54%)]
1,877 (70.94%)

[0]
1,734 (65.53%)

[0]
528 (19.95%)

[2,052 (77.55%)]
204 (7.71%)

[2,151 (81.29%)]
Emulator Detection � 2,618 (98.94%)

[0]
58 (2.19%)

[0]
37 (1.40%)

[0]
8 (0.30%)

[0]
12 (0.45%)

[2,585 (97.69%)]
Root Detection � 2,285 (86.36%)

[0]
2,196 (82.99%)

[0]
1,973 (74.57%)

[0]
2,544 (96.15%)

[31 (1.17%)]
659 (24.91%)

[1,937 (73.20%)]
Keylogger Protection 996 (37.64%)

[342 (12.93%)]
598 (22.60%)

[0]
104 (3.93%)

[0]
1,398 (52.83%)

[0]
197 (7.45%)

[0]
Screenreader Protection 375 (14.17%)

[1,082 (40.89%)]
34 (1.28%)

[0]
26 (0.98%)

[0]
- -

Certificate Pinning 676 (25.55%)
[0]

4 (0.15%)
[1,284 (48.53%)]

5 (0.19%)
[1,109 (41.91%)]

753 (28.46%)
[0]

11 (0.42%)
[1,411 (53.33%)]

ð Integrity Protection / 1,601 (60.5%) Env. Protection � 2,638 (99.7%) I/O Protection 1,758 (66.4%)
 Integrity Protection / 1,365 (51.6%) Env. Protection � 2,561 (96.8%) I/O Protection 1,891 (71.5%)

5. Empirical Study

We validate HALY’s capabilities and use it to analyze
popular Android and iOS apps to assess their adoption of
hardening techniques. First, we study the prevalence of
hardening techniques in the two ecosystems. Second, we
directly compare Android apps with their respective iOS
counterparts, revealing insights into how developers adapt
or change their techniques according to the target OS.
Finally, we investigate whether hardening is commonly
implemented by third-party libraries and correlate adop-
tion to the use of sensitive permissions.

5.1. Dataset

In order to analyze and compare the usage of hard-
ening techniques between Android and iOS we focus on
apps that exist on both platforms, i.e., cross-platform apps.
We use the dataset of Steinböck et al. [83], consisting of
the 3,322 most popular widely used cross-platform apps

collected in 2023 that have both an Android and an iOS
version. The dataset provides a 1:1 mapping of apps across
both platforms, e.g., the Facebook app for Android and for
iOS. Note, however, that they could still be developed by
different development teams.

Among these apps, 19 (0.6%) apps failed our static
analysis on Android because their manifest file could not
be parsed, preventing us from obtaining critical informa-
tion for our analyses. Further, we were unable to decrypt
190 (5.7%) iOS apps because decryption requires the app
to run on a jailbroken device for memory dumping. Some
apps failed to install due to version incompatibilities, as
our jailbreak was limited to iOS 16, while others were ter-
minated by the device for excessive memory usage since
our approach loaded all data into memory for dumping.
During dynamic analysis, 80 (2.4%) Android apps failed
on our physical device and 160 (5.4%) on the emulator,
out of which 34 (1.0%) apps fail on both. Additionally,
318 (9.6%) iOS apps failed dynamic analysis. The most
common reason for dynamic analysis failure was that apps

0 1 2 3 4 5 6 7
0%

25%

50%

75%

100%

iOS
Android
99th percentile
(iOS)
99th percentile
(Android)

1
Figure 3: CDF of studied hardening techniques imple-
mented by apps. We found that Android apps implement
more categories of hardening techniques than iOS apps.

crashed too many times during the analysis, which can
be caused by our Frida hooks. Reducing the run time
of the analysis could prevent this issue in some cases,
but we still excluded these apps from our results. Other
reasons for dynamic analysis failures were timeouts or that
the app crashed upon opening, even without Frida hooks
present, which might be caused by version mismatches.
We remove both the Android and iOS version of all apps
that failed one part of our analysis from our dataset.
However, analysis failures could also be an indicator for
advanced protections, although our framework tries to
circumvent them, which might influence our dataset to
contain less hardened apps. Ultimately, we excluded a
total number of 676 apps and our final dataset contains
2,646 apps per OS, and 5,292 apps in total.

5.2. Prevalence of Hardening Techniques

In Table 3, we present an overview of the prevalence of
each of the RASPs that we analyzed. For each hardening
technique, the table shows the number of Android and
iOS apps that HALY detected as implementing the spe-
cific technique, both using static and dynamic analysis.
Within square brackets, we also indicate the number of
low-confidence detections, which we further elaborate on
below. On a general level, we observe that the preva-
lence of hardening techniques differs significantly between
different techniques, as well as different OSes. Figure 3
shows the cumulative distribution function of the num-
ber of different techniques adopted by Android and iOS
apps—excluding screenreader protection, which is only
supported for Android. Respectively, 0.2% and 1.4% of
the analyzed Android and iOS apps do not implement any
of the studied hardening techniques. While most apps on
Android implement more than 4 different techniques, on
iOS almost half of our analyzed apps implement at most 2
different hardening techniques. Only 26 Android apps and
one iOS app adopt all of the analyzed techniques. Since
our framework may not detect high-level protections or
unconventional and custom implementations, these results
should be treated as lower bounds.
Integrity: anti-tampering protection. There are two
ways to implement anti-tampering protection. First
of all, a developer can use an attestation framework.
On Android, HALY finds the SafetyNet API in 4.2%
of apps using static analysis, but only in one during
dynamic analysis. The Play Integrity API, the successor
of SafetyNet, is detected in 9.3% of apps during static
analysis, and not detected at all during dynamic analysis.
This indicates that some of the apps still rely on the

older framework. However, the Play Integrity API
has only been released since 2022. We also find 12
Android apps that contain both, SafetyNet API and Play
Integrity API. On iOS, HALY finds Apple’s App Attest
Service in 4.1% of apps using static analysis and 1.1%
of apps during dynamic analysis. The lower adoption
of the App Attest Service could be explained by its
relatively recent release in 2020 [66]. It is interesting
that there are many apps that include an attestation
service, which is however not detected during dynamic
analysis. One would expect an app to execute attestation
at the earliest possible moment. This could indicate
that many apps planned to implement attestation, but
did not fully integrate it, or that they only perform
attestation in specific scenarios. Apps can also use their
signatures to detect tampering. On Android, we track the
PackageManager::hasSigningCertificate()
function, which validates signatures in 10.4% of apps
according to our static analysis, but we only detect it
in 3 apps during dynamic analysis. On iOS, 32.6% of
apps access their embedded.mobileprovision file,
which may indicate repackaging [91].

Integrity & Environment: hooking detection. Using
static analysis, we find hooking detection in 55.3% of
Android apps. Interestingly, detection during dynamic
analysis is much lower for Android apps, namely around
4.5% when executed on a rooted device and 2.6% on
an emulator. We manually investigated this difference.
We find that 875 Android apps (around 33.1%) of apps
include the library com.appsflyer, which performs
both Frida and Xposed detection. We discuss details
about this and other third-party libraries and their in-
fluence on the prevalence of RASPs in Section 5.5.
Meanwhile, on iOS, hooking is detected in 15.1% of
apps during static analysis, and 19.8% during dynamic
analysis. The high numbers of uncertain results on
iOS can be explained by the fact that around 95.7%
of iOS apps use the function _dyld_image_count,
and 74% use both the _dyld_image_count and
_dyld_get_image_name functions, which are quite
commonly used to check for traces of hooking frame-
works [63]. Most jailbreaks on iOS come with Cydia Sub-
strate to allow users to install so-called “tweaks,” which
use hooking to modify apps such as the home screen. Of
the apps that implement jailbreak detection, 31.4% also
implement detection of this hooking framework.

Unsurprisingly, detection of hooking frameworks that
are only available on Android are only detected in Android
apps. Xposed detection is present in 46.9% of Android
apps. In contrast, HALY identifies artifacts related to the
lesser-known Android hooking frameworks Zygisk and
Riru in two apps and three apps, respectively. There are
still quite a few Android apps that check for the Cydia
Substrate framework, even though Cydia Substrate has not
been in active development on Android after 2013 [37].
We identify artifacts for this framework in 24.7% of
Android apps. Naturally, detection of Cydia Substrate
is much more prevalent on iOS, where HALY identifies
adoption in 30.3% of apps. Finally, using static analysis,
we reveal that Android apps implement detection of Frida
more often than iOS apps, namely 44.9% vs. 2.9%. This
difference can mostly be explained by the popularity of

the aforementioned com.appsflyer Android library.
Environment: debug detection. Almost all
(94.0%) Android apps implement some kind of
debug detection. 88.3% of Android apps use
the Debug::waitingForDebugger() or
Debug::isDebuggerConnected() function.
61.9% of Android apps check if the developer settings
are enabled, and 53.1% check if adb is enabled.
Furthermore, we find usage of ptrace in 58.4% of
Android apps and 2.0% of iOS apps, and 19.6% of iOS
apps use the getppid function.
Environment: emulation detection. Emulator detection
is very common on Android (present in 98.9% of the
apps). Build variables are used in all but one case to
identify emulators. This also explains the large difference
between static and dynamic analysis results, since usage of
these variables cannot be detected during dynamic analy-
sis (see Section 3). The most common Build checks can
be found in Table 5 (Appendix). Build variables are also
used for non-hardening purposes, such as compatibility
checks. HALY cannot differentiate between these uses.
Aside from the Build variable, 2.5% of Android apps
check for the presence of emulator-related files.

Contrary, on iOS, emulator detection is
very rare (0.8%). During static analysis, HALY
identifies 6 apps that check for the iOS simulator
using the /Applications/Xcode.app
directory, and one app that inspects the
SIMULATOR_SHARED_RESOURCES_DIRECTORY
environment variable. However, none of these apps are
present in our dynamic analysis results, which only
include 10 apps that check for both the CI_NO_CM and
CI_PRINT_PROGRAM environment variables, and two
that check only for CI_NO_CM, which we identified as
environment variables present on a Corellium emulator
but not on a physical iPhone. The large number of
uncertain results for dynamic analysis on iOS are caused
by the retrieval of all environment variables. HALY cannot
detect if these variables are then used for emulation
detection or something else, e.g., testing purposes [67],
but considering our other results, we consider the latter a
more probable hypothesis for most of these retrievals.
Environment: root and jailbreak detection. We find
root detection in 92.3% of Android apps and 96.7% of
iOS apps. During dynamic analysis, we find that 84.5%
of Android apps and 24.9% of iOS apps check for the
existence of root-related files or validate the permissions
of system directories, and 13.3% of Android apps and
6.8% of iOS apps check if root-related apps are installed.
The most common apps and files that apps check for can
be found in Tables 6 and 7 (in the Appendix), respectively.

Since jailbreaks for different iOS versions have dis-
tinct names, we can investigate if an app checks for spe-
cific jailbreaks. We observe that apps looking for specific
jailbreaks mostly check for blackra1n and unc0ver in 5.5%
and 1.4% of iOS apps, respectively. We also find a few
apps that check for a selection of lesser-known jailbreaks,
such as Pangu and Taurine. Interestingly, we find no apps
with detection for specific jailbreaks for iOS 15 (released
in September 2021) or newer, indicating that jailbreak
detection in apps is not updated very often after new
jailbreaking techniques are released. However, many apps

use a more generic approach to detect jailbreaks, for in-
stance by checking if a third-party app store is installed, if
directory permissions differ from a non-jailbroken iPhone,
or if a binary such as apt exists on the phone.
I/O: keylogger protection. On Android, we find that
49.4% of Android apps and 56.2% of iOS apps query
enabled input methods, which can be used to check if a
trusted keyboard is used. Further, 0.5% of Android apps
disable showing the keyboard for some input fields and
4.5% of iOS apps change the inputView of an input
field, which can be used to show a custom keyboard. The
uncertainty in static analysis results for Android is caused
by HALY not always being able to determine if a function
is used to enable or disable showing the keyboard and
which exact settings are retrieved. The dynamic results
are a lower bound, as the input view for which a custom
keyboard is shown is not visible on the startup screen.
I/O: screenreader protection. We found screenreader
protection in 14.6% of Android apps. HALY detected that
22 apps set a view as “secure” to prevent screenshots or
screen-recording. The low dynamic analysis results may
be caused by limited code coverage (e.g., if apps only use
this flag for views with sensitive information and not for
the main screen shown at startup). Uncertainty in static
analysis results is caused by HALY not always being able
to determine if the secure flag or another flag is enabled.
On iOS, there is no API to prevent screenshots or screen-
recording (and we do not detect custom implementations).
I/O: certificate pinning. HALY detects certificates in
25.6% Android apps and 28.6% iOS apps—either in-
cluded as a certificate file or as the hash of a certificate.
We find a certificate file in 19.0% of Android apps and
28.2% of iOS apps. We find certificate hashes in 21.9% of
Android apps and 8.6% of iOS apps. It is unfortunately
quite difficult to say if an app uses certificate pinning
when utilizing detection analysis. In many cases, HALY
can detect that the app calls a certificate pinning or
connection security-related function, but it could confirm
that certificate pinning was used in less than 1% of cases.

Takeaways. We showed that:
• Only 26 Android apps with (and 66 without)

screen-reader protection, and just 1 iOS app im-
plement all analyzed hardening techniques.

• More than 50% of Android apps implement at
least 4 RASPs, while on iOS more than 47.1%
implement at most 2.

• Some RASPs are more prevalent than others:
we found root and jailbreak detection in most
Android and iOS apps, while emulator and anti-
debug detection are more prevalent on Android.

5.3. Android Emulator vs. Rooted Device

We run HALY on both an Android emulator and a
rooted device to investigate the effectiveness of HALY in
both environments. In Table 3 it can be seen that the
prevalence of hardening techniques is 23.7% higher on
the rooted device than on the emulator. Through a Chi-
squared test, we find that the differences in prevalence is
statistically significant for all hardening techniques except

for screenreader protection and anti-tampering. We use a
significance p-value of 0.05. We find that screenreader
protection, anti-tampering and emulation detection have a
p-value of 0.36, 0.11 and 0.04 respectively and find p-
values of near 0.0 for the remaining techniques Overall,
this indicates that HALY is more effective at detecting self-
protection on a rooted device than on an emulator—either
due to apps checking for emulators or compatibility.

5.4. Applications with Advanced Protections

Although not the focus of our study, SPTs have been
seen to influence the effectiveness of HALY, as discussed
in Section 4. Table 8 and 9 (in the Appendix) show the
most common obfuscators and packers for Android in the
popular apps dataset [83], our dataset as evaluated, and
our industry dataset (see Section 4), which are DexGuard
9.x and Arxan (obfuscators), as well as DexProtector and
Promon Shield (packers). We observed other obfuscators
and packers in the industry dataset, which are not detected
by APKiD [72], thus their presence in the other datasets
is unknown. The overall prevalence of obfuscators and
packers is low, with 6.27% and 0.26% respectively.

We noticed that apps with obfuscators or packers are
unlikely to complete the full analysis: almost all apps with
packers applied crash. We believe these to be advanced
applications, and that these SPTs hinder analysis [27].
This applies to the industry dataset as well, which presents
a high false negative rate and many crashes (Section 4).

The apps that completed our analysis implement on
average 7.13 (obfuscators) and 6.29 (packers) hardening
techniques. Globally, the average number of hardening
techniques implemented is 5.91. This indicates that ad-
vanced security-focused applications apply obfuscators
and packers on top of other hardening techniques.

5.5. Android vs. iOS Adoption

We now zoom out and investigate whether the preva-
lence of hardening techniques differs between the Android
and iOS versions of the same apps. This gives an indica-
tion if the implemented hardening techniques are strictly
dependent on the OS or if there are, e.g, company-wide
policies to implement certain techniques. We also provide
insights into the prevalence of hardening techniques in
relation to the category of apps, the sensitive permissions
they request, as well as the libraries they integrate.

On Android, 45.1% (1,194) of apps implement all
three categories of hardening techniques, 36.6% (968)
implement exactly two categories, and 18.1% (479) of
apps implement only one category of hardening tech-
niques. On iOS, 38.5% (1,019) of apps implement all three
categories, while 44.2% (1,170) of iOS apps implement
two categories and 15.9% (420) implement one category.
This suggests that Android apps implement a wider range
of RASPs than iOS apps. More specifically, for each
category in our taxonomy we observed:
Integrity Protection. We identified 1,601 (60.5%) apps
on Android and 1,365 (51.6%) apps on iOS implement-
ing anti-tampering or anti-hooking techniques. Only 450
(17.0%, Android) and 386 (14.6%, iOS) implement both.
Environment Protection. On both ecosystems we found
that over 95% (2,638 on Android; 2,561 on iOS) of

Ro
ot
&
Jai
lbr
eak

De
tec
tio
n
Ke
ylo
gge

r

Pro
tec
tio
n

Ho
oki
ng

De
tec
tio
n

An
ti-D

ebu
g

Ce
rtif
ica
te

Pin
nin
g

An
ti-T

am
per
ing

Em
ula
tio
n

De
tec
tio
n

Scr
een
rea
der

Pro
tec
tio
n

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

Both
Android
only
iOS only

1
Figure 4: Consistency of hardening techniques between
OSes. We show for how many apps each hardening
technique is implemented by (1) both the Android and
iOS versions, or (2) only by the iOS or the Android
version. Only root detection is implemented in almost
every app with little difference among the OSes. The other
techniques show clear differences.

0 1 2 3 4 5 6 7
0%

25%

50%

75%

100%

CDF for # of different
hardening techniques
99th percentile

1
Figure 5: CDF of hardening techniques implemented on
only one platform. We find a high discrepancy in the
implemented RASPs between the two OSes. Almost no
app implements the same techniques on Android and iOS.

our analyzed apps implement at least one environment
protection technique, and 1,424 (53.8%) on Android but
only one iOS app implement all.
I/O Protection. We found less Android than iOS apps
that implement I/O protection techniques: 1,758 (66.4%)
implement at least one and 91 (3.4%) all three techniques
on Android while on iOS 1,891 (71.5%) implement at
least one and 353 (13.3%) both analyzed techniques.
Cross-platform consistency. Figure 4 shows whether
hardening techniques are implemented on both OS ver-
sions or just one. We include the results of both static
and dynamic analysis. Interestingly, we can see that there
are quite a few apps that implement a hardening tech-
nique only on one platform, even for hardening techniques
that are prevalent on both OSes, such as hooking detec-
tion, certificate pinning, and keylogger protection. Anti-
tampering, hooking and emulator detection are almost
exclusively implemented on Android but not on the iOS
counterpart. In Figure 5, we present the CDF of the
number of hardening techniques apps implement on only
platform. Here, we exclude the screenreader protection,
since HALY cannot detect this on iOS. We found that
for roughly 55% of our analyzed apps, the variance in
implemented hardening techniques between their Android
and iOS version ranged from 1 to 3. We find only three
apps that implement the same techniques on both OSes.

Overall, our results reveal significant inconsistencies
in hardening techniques between Android and iOS ver-
sions of the same apps. This suggests either a disconnect
between developers for each platform, differences in ex-
pertise, or that certain techniques (e.g., anti-debugging,

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7 Android iOS

1
Figure 6: Average number of hardening techniques imple-
mented in an app depending on the number of privacy-
sensitive permissions. Apps requesting more sensitive per-
missions tend to implement more hardening techniques.

0 1 2 3 4 5 6 7
0%0%

25%

50%

75%

100%

CDF for # of different
permissions
99th percentile

1

Figure 7: CDF of privacy-sensitive permissions requested
on only one OS. Only around 15% request the same per-
missions, and most apps differ in the number of requested
sensitive permissions by one to two.

emulator detection) are more relevant and documented for
one OS. The lack of emulator detection on iOS may be
due to the relatively recent advancements in iOS emula-
tion. Corellium, the first publicly available iOS emulator,
opened its services in 2021 [26]. Additionally, it was only
in late 2021 that researchers found ways to run ARM app
binaries on the iOS Simulator [31].

App store categories. One would expect hardening tech-
niques to be more prevalent in apps within certain cat-
egories, based on the amount and sensitivity of privacy-
sensitive information they typically handle (e.g., finance,
games or shopping apps). Table 4 shows the average
hardening techniques per app based on sensitive permis-
sion categories. We considered a hardening technique as
being present in an app if it is detected during either
static or dynamic analysis. In general, the OSes follow
a similar pattern. Especially in the Finance and Shop-
ping categories, we observe a high average number of
implemented hardening techniques. We can also clearly
see that the number of implemented hardening techniques
is generally lower on iOS than on Android. Since HALY
cannot detect screenreader protection on iOS, this slightly
skews these results. Removing screenreader protection
lowers the average hardening techniques on Android but
barely affects their relative prevalence across categories.

Apps with sensitive permissions. Apps that access
privacy- or security-sensitive data likely want to keep
such information safe. To investigate this relation, we
have identified eight categories of sensitive permissions:
calendar, camera, contacts, location, microphone, health
sensors, storage, and HomeKit access—where the last
category is only relevant for iOS. For each app, we
compute the number of categories of sensitive permissions
the app uses. In Figure 6, we present the average number
of hardening techniques for apps depending on the number
of these sensitive permission categories. On both OSes,
we can see a positive correlation between the number of

Em
ula
tio
n

De
tec
tio
n

An
ti-D

ebu
g

Ro
ot
&
Jai
lbr
eak

De
tec
tio
n
Ke
ylo
gge

r

Pro
tec
tio
n

Ho
oki
ng

De
tec
tio
n

An
ti-T

am
per
ing

Scr
een
rea
der

Pro
tec
tio
n
Ce
rtif
ica
te

Pin
nin
g

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

Android 1st Party
Android 3rd Party
iOS 1st Party
iOS 3rd Party

1

Figure 8: Prevalence of hardening techniques in first-
party vs. third-party code. On Android, third-party code
implements more protections. On iOS, root detection is
the most widely used third-party code.

privacy-sensitive permissions requested by an application
and the number of hardening techniques it implements,
i.e., apps with more sensitive permissions also implement
more hardening techniques. While this may suggest that
developers of privacy-sensitive apps recognize the risk and
employ more protections, some apps still lack adequate
hardening despite requesting many sensitive permissions.

We also investigated how consistent apps are in re-
quiring sensitive permissions across OSes. Figure 7 shows
the distribution of the number of sensitive permissions that
are only requested on one OS. We observe that many apps
request different sets of permissions across their Android
and iOS versions. Indeed, only 15.1% of apps request
the same sensitive permissions on both OSes. Most apps
request one or two sensitive permissions only on one OS.

We created a mapping between iOS and Android per-
missions by combining the protected resources [10] in the
iOS documentation with the manifest permissions [33] in
the Android documentation. Note that there is no perfect
one-to-one match between Android and iOS permissions,
so an app might provide the same functionality on both
OSes but still require different permissions. Furthermore,
while on Android the developer explicitly defines the
needed permissions in the manifest file, on iOS permis-
sions are requested dynamically when apps invoke a func-
tion that needs a permission. Developers, however, need
to provide a description of why they request a sensitive
permission in the plist file. We detect the presence of
these descriptions. Nonetheless, an app might declare a
permission in the manifest, or provide a description in the
plist file, but not actually use the permission at run time.
First-party vs. third-party implementations. Figure 8,
presents the prevalence of hardening techniques in third-
party libraries vs. first-party code (note that apps may
have both). Interestingly, most hardening techniques on
Android originate from third-party libraries, while on iOS,
most are in first-party code. Tables 10 and 11 (Appendix)
show the most popular libraries that implement hardening
and show that three Android libraries contribute to much
of this difference. The hardening techniques detected in
them surprisingly differ per app, although this may be
caused by different versions of the libraries.

The most-used Android library we find is Google
Mobile Services (com.google.android.gms), de-
tected in 96.3% of Android apps. Emulation detection
in this library is in 96.1% of apps in our dataset and
debug detection in 76%. Next, we find the Firebase

TABLE 4: Average number of hardening techniques implemented in an app per category. The category ”Other” includes
categories with less than 1% of the total number of analyzed apps. Shopping, Social and Finance on average have the
most hardening techniques on Android and iOS. Screenreader is included in the average on Android, but not on iOS.

Shopping Social Finance Travel Communication Business Games Maps Sports Lifestyle

ð 6.76 6.67 6.55 6.43 6.21 6.07 6.00 5.97 5.92 5.79

 4.41 3.98 4.10 3.99 4.00 3.58 3.96 3.74 3.56 3.93
Photography News Entertainment Music & Audio Productivity Health & Fitness Tools Books & Ref. Other

ð 5.68 5.60 5.56 5.49 5.40 5.32 5.16 5.09 5.98

 3.48 3.23 3.75 3.46 3.61 3.33 3.15 3.45 3.81

(com.google.firebase) library in 55.4% of apps.
It implements root detection in 55.2%, debug detection in
53.7%, and emulation detection in 53.0% of apps. Finally,
AppsFlyer (com.appsflyer), present in 33.1% of apps,
implements hooking detection for all of those apps.

No iOS library implements a hardening technique for
significant numbers of apps, apart from root detection.
Here, the main libraries are Firebase and GoogleUtilities,
a utilities library for Firebase. We find Firebase-related
libraries in 42.0% of iOS apps, and they perform root
detection in all of them. We find that UnityFramework
offers keylogger detection in 31.9% of apps. Several li-
braries seem to be intended for hardening apps, but are
not very prevalent: RootBeer (2.0% on Android), Trust-
Defender (0.6% on Android), FraudForce (0.4% on iOS)
and ForterSDK (0.6% on iOS).

On Android, we found 5 libraries responsible for 6 or
more protections: com.google.android.gms,
com.facebook, com.google.firebase,
com.inmobi, and com.amazon. On iOS, the only
library with more than 5 protections is UnityFramework.

Takeaways. Comparing hardening technique
prevalence on Android and iOS, we found:
• The adoption of RASPs shows inconsistencies

between the OSes, as most apps (82.0%) have
two to four hardening techniques that are only
implemented on one OS (typically on Android).

• The adoption of hardening techniques differs
between app categories on both OSes. Shopping,
Social and Finance apps implement most.

• Apps with more privacy-sensitive permissions
implement more hardening techniques. Further-
more, the usage of privacy-sensitive permissions
often differs between Android and iOS apps.

• The difference in the prevalence of RASPs
is largely caused by third-party libraries. On
Android, hardening techniques are more often
present in third-party libraries than in first-party
code, while on iOS this is the other way around.

6. Discussion

We discuss insights for users, developers, and re-
searchers and compare our results to prior studies.

6.1. Insights

We reveal important insights, questioning the overall
security of today’s apps, calling for action from mobile
developers, and pinpointing areas for future research.

Effectiveness of hardening techniques. We showed, that
almost all apps implement at least one hardening tech-
nique. However, few apps use a broad set of techniques,
and individual protections can be bypassed, as demon-
strated in our framework. In fact, the effectiveness of
self-protection depends on implementation and whether
multiple layered techniques are used, as recommended
by OWASP [63]. For instance, anti-tampering protection
can be bypassed by either patching the responsible code
or using hooking frameworks like Frida or Xposed to
overwrite the return values of functions that check sig-
natures [63]. Ruggia et al. [75] built a sandbox that can
effectively bypass emulator detection on Android, while
OWASP [63] further mentions the possibility of patching
the apps to overwrite methods that give away the running
environment. Similarly, Pradeep et al. [68] showed that
certificate pinning can be bypassed by using Frida to
disable certificate validation on both Android and iOS.
All in all, the presence of a single, or a few, hardening
techniques says little about effectiveness of self-protection
methods, questioning the overall security of today’s apps.
Worse, the current adoption may give both users and
developers a false sense of security.
Android vs. iOS. Apps on iOS significantly underperform
in self-protection when compared to the respective An-
droid versions. 73.6% of iOS apps implementing at most
3 of the recommended techniques—opposed to 24.1% on
Android; and only 26 Android and 1 iOS app adopting all.
As such, we call for action from developers, especially on
iOS, to implement a more diverse set of techniques.
Effectiveness of analysis approaches. Several prior stud-
ies leveraged and improved static and dynamic approaches
to analyze mobile apps and track the adoption of harden-
ing techniques. However, while most of the self-protection
measures in today’s popular apps are easy to analyze, we
show that this is not the case for some highly sophisti-
cated mechanisms present in our industry dataset, which
intertwine hardening techniques with code obfuscation.
Besides, apps in this dataset are more likely to crash upon
detection of a tampered environment. Thus, despite the
recent advances, more research is needed.

6.2. Trends

We compare our results to the related work present in
Table 1 to show how the adoption of hardening techniques
developed over time. As most prior work focuses on
Android, we compare only Android results—except for
certificate pinning, which has also been studied on iOS.
Total prevalence. Zungur et al. [98] found in 2021 that
25.1% of the analyzed financial apps implement no hard-

ening technique. Ruggia et al. [75] (2024) found only
9.2% of their apps to adopt not a single RASP and we
find that only 0.2% of our Android apps to implement no
hardening technique, suggesting that hardening techniques
on Android have become prevalent.
Integrity: anti-tampering protection. In 2021, Zungur
et al. [98] found that 47.5% of their dataset implements
signature detection, and Ibrahim et al. [42] detected the
invocation of SafetyNet in 0.3% of their analyzed apps.
Ruggia et al. [75] (2024) detected the usage of any
function related to SafetyNet in 35.7% of their benign
dataset and the usage of Play Integrity in 0.11%. We
find SafetyNet used for anti-tampering protection in 4.2%
of our apps and Play Integrity in 9.3%. The increased
adoption of Play Integrity indicates that many apps that
previously used SafetyNet now migrated to the newer API.
Integrity & Environment: hooking detection. Zungur
et al. [98] (2021) found hooking detection in 31.7% of
their dataset. Ruggia et al. [75] (2024) state that, within
their benign dataset, 13% check for process artifacts and
6.5% search for installed apps. We find over 55% of our
apps to detect different hooking frameworks. However,
a significant amount of these identifications is caused
by libraries. This might indicate that popular libraries
included hooking detection in recent years.
Environment: anti-debugging protection. Zungur et
al. [98] (2021) found 43% of apps in their dataset to detect
debugging. We observe debugger detection in almost 94%
of Android apps, showing a significant increase in the
usage of this technique.
Environment: emulation detection. In 2021, Zungur
et al. [98] found emulation detection in 42.2% of their
apps. Three years later, Ruggia et al. [75] detected such
technique in 81% of their dataset, while we detect it in
almost 99% of our apps. This suggests that nowadays apps
are sensitive to the environment where they are run.
Environment: root detection. In 2015, Evans et al. [28]
found that 80% of security and mobile device management
apps detect root artifacts. In 2019, Kellner et al. [45]
showed that 59% of apps across all categories and 66% of
their investigated banking apps implement root detection.
Ruggia et al. [75] (2024) found root detection in 61% of
their benign apps. We observe root detection in 92.3% of
our Android dataset, showing an increased adoption rate.
I/O: certificate pinning. In 2015, Reaves et al. [71]
analyzed 7 Android apps and found 28 SSL/TLS vulner-
abilities. In 2022, Pradeep et al. [68] identified certificate
pinning in 6.7% and 11.4% of the analyzed Android and
iOS apps. We find 25.6% of Android apps and 28.6%
of iOS apps to implement certificate pinning, showing a
significant adoption increase.

7. Limitations & Future Work

Technical limitations. Since we depend on tracking spe-
cific method calls and fields in apps, our framework
might miss certain hardening techniques that are imple-
mented in an unconventional way, e.g., using a classi-
fier to distinguish between physical Android devices and
known sandboxes [47], as well as high-level or custom
implementations of hardening techniques. Also, our static

analysis cannot always determine whether a method call
corresponds to a hardening technique when this depends
on the arguments passed to the method or how the return
value is processed. Future research can investigate how
to combine static and dynamic analysis to determine if a
method call is related to a hardening technique and how
to handle custom implementations automatically.
Differential analysis. Since we perform detection anal-
ysis, our framework is unable to determine how an app
responds to the detection of a hardening technique, i.e.,
if it leads to behavioral changes. When testing HALY on
both emulators and rooted devices, no concrete conclusion
can be drawn. For this, we need to capture additional
information (e.g., state snapshots). We plan to extend
HALY with a differential analysis phase and combine the
results of both approaches.
Privacy leakage. Self-protection can be a double-edged
sword, as it can be adopted by apps to hide malicious
behavior. Apps have been shown to adopt obfuscation to
hide leaking private information [23]. Future research can
investigate the relation between the usage of hardening
techniques and the occurrence of privacy leakage.
App exploration. We did not use any app exploration.
We assume that apps have an interest in running their
hardening techniques at the earliest possible stage and
that we are thus able to detect adoption without any app
interaction. Furthermore, Pradeep et al. [68] found that
random interactions made no significant changes to the
resulting network traffic.
Detectable hardening techniques. Our framework does
not focus on the analysis of code obfuscation and device
binding [80]. Obfuscation targets static analysis and takes
many forms. In apps, however, obfuscation mainly leads
to false negatives during static analysis, which HALY
overcomes with dynamic analysis. In applications like
malware, where both obfuscation is applied and environ-
ment checking leads to a crash, HALY will most likely
fail to fully analyse the application. The implementation
of device binding is highly app-specific, which makes
both difficult to detect automatically and investigating the
prevalence of these techniques requires more research.
Hardening bypassing and advanced hardening tech-
niques. Our bypasses for root and hooking detection are
not perfect. Thus, there may be a few apps that did not
execute all their hardening checks. Furthermore, a few
apps failed dynamic analysis since they detected Frida,
especially in the dataset of advanced Android apps (Sec-
tion 5.4). This, however, occurs in a small portion of our
popular app dataset, without affecting the significance of
our findings. Further, if dynamic analysis fails, HALY still
provides partial results based on static analysis.
Threats to validity. In general, determining with absolute
certainty whether or not an app implements protection
against specific threats is fundamentally impossible due
(ultimately) to the halting problem. Instead, we report on
the results of state-of-the-art techniques for the detection
of self-protection, tuned for the avoidance of false posi-
tives where applicable. We assume that the wide range of
detection techniques, both static and dynamic, and explicit
(albeit non-exhaustive) validation efforts result in robust
and meaningful results overall, even if a small number

of false positives/negatives may still be present for some
apps. Hypothetical pervasiveness of more sophisticated
self-protection that cannot be detected by any of our
techniques would skew these results.

8. Related Work

While prior work has surveyed hardening techniques
on Android [80], we are the first to comprehensively study
app hardening techniques across mobile ecosystems. Ta-
ble 1 summarizes the extent to which prior research con-
sidered these hardening techniques and on which datasets.
Here, we summarize these studies.
Broader studies. AppJitsu [98] uses dynamic analysis
to detect the presence of five hardening techniques in a
few hundred Android apps. In contrast, HALY uses both
static and dynamic analysis to detect seven techniques
in thousands of apps on both Android and iOS. Since
it is difficult to determine if an app’s refusal to run
on an analysis engine due to emulator detection, root
detection, hooking detection, or a combination of these,
its results are more limited than ours. Unlike HALY,
DroidDungeon by Ruggia et al. [75] analyzes evasion
techniques of malicious and benign Android apps using
a probe-based sandbox, rather than the prevalence of all
recommended hardening techniques across Android and
iOS or the consistency thereof in cross-platform apps. Suo
et al. [85] conducted a manual static analysis to identify
specific implementations of hardening techniques by gen-
erating fingerprints. They developed a tool that combines
static and dynamic analysis to detect these fingerprints
in applications. However, unlike our work, their focus is
limited to Android, while we evaluate a broader range of
hardening techniques across multiple platforms. Sihag et
al. [80] survey hardening techniques and obfuscation of
benign and malicious Android apps, and elaborate their
effectiveness based on existing literature. In contrast, our
work conducts an empirical analysis of apps to assess the
implementation of hardening techniques.
Android SafetyNet. Ibrahim et al. [42] analyze the pop-
ularity of Android’s SafetyNet Attestation API, the pre-
decessor of the Play Integrity API. Analyzing 163k apps,
they find only 62 that invoke SafetyNet attestation and
none that correctly implement the SafetyNet API in full.
In our experiments, 111 apps clearly used SafetyNet,
while attestation was present in only one—supporting
their claim that apps do not implement SafetyNet properly.
RASP products. Haupert et al. [40] demonstrate two
vulnerabilities in Promon Shield, one of the leading RASP
products for Android, that made it possible to disable all
offered protections statically and dynamically.
Root and jailbreak detection. Kellner et al. [45] dy-
namically analyze jailbreak detection in 34 banking apps
and 3,482 popular apps on iOS. They find that 59% of
the popular apps and a comparable fraction (53%) of
the banking apps implement it. In contrast, our dynamic
analysis finds jailbreak detection in just 25% of iOS apps.
Similarly, Evans et al. [28] study the prevalence of root
detection in 16 security apps and 19 enterprise mobile
device management apps on Android and find 13 security
apps and 15 device management apps that employ root
detection. In our results, the popularity of root detection on

Android is high (92.3%). Sun et al. [84] examined various
root detection techniques and analyzed 182 Android apps,
concluding that these methods are ineffective.

Debug and anti-tamper detection. Berlato et al. [13]
study anti-debugging and anti-tampering adoption in 14k
(2015) and 23k (2019) benign Android apps, finding that
59% lacked both protections and that apps in the newer
dataset implemented more security measures.

Certificate pinning. Multiple studies analyze the use of
individual hardening techniques. Fahl et al. [29] analyzed
potential vulnerabilities against MITM attacks in 13,500
Android apps and found that around 8% are vulnerable.
Pradeep et al. [68] compare the prevalence of certificate
pinning in Android and iOS apps, using static analysis
and differential dynamic analysis. Interestingly, they find
that 19.7% (Android) and 33.4% (iOS) of apps include
embedded certificates, while HALY discovers more apps
that embed certificates on Android (25.6%) and less on
iOS (28.6%), even though it uses a similar methodology
for static analysis. Reaves et al. [71], investigating the
communication security of 46 branchless banking apps
on Android, found that most fail to protect the financial
information properly.

Other protections. While not the focus of our study, re-
lated work has also studied the use of code transformation
(obfuscation, encryption, and packing) to thwart reverse
engineering [4], [12], [22], [39], [56], [57], [65], [70],
[97]. Likewise, several studies focus on identification (and
reversing) of packers [27], [92]–[94], [96].

Malicious behavior. While hardening techniques are com-
monly used to protect legitimate applications, they are
also leveraged by malware to resist analysis and bypass
security mechanisms. Various studies have explored how
hardening techniques can enable malicious apps to evade
detection [17], [47], [53], [55], [59], [89]. Similarly, re-
lated work has studied how sandboxes for Android can
be made robust against evasion [15], [75] or how to
effectively use real devices for analysis [58].

Summary. Compared to prior work, we cover more rec-
ommended hardening techniques [60], [63], more types of
analysis, a large-scale dataset of apps, as well as offering
cross-correlation across both mobile ecosystems.

9. Conclusion

We performed an in-depth comparative study of the
adoption of self-protection in Android and iOS apps. First,
we reviewed and categorized hardening techniques avail-
able in both mobile ecosystems. Next, we implemented a
framework, HALY, which combines state-of-the-art static
and dynamic analysis to track such techniques. We then
analyzed 2,646 popular apps available on both OSes. Our
results revealed that iOS apps underperform in adopting
self-protection in comparison to their Android counter-
parts, that adoption differs across app categories, and that
many apps implement hardening techniques on only one
OS. Finally, we revealed that 24.1% (Android) and 73.6%
(iOS) apps implement fewer than half of the recommended
self-protection techniques, and only 26 Android app adopt
all eight and only one iOS app adopts all seven.

Acknowledgments

We would like to thank our reviewers for their valu-
able comments and inputs to improve our paper. We
would also like to wholeheartedly thank Uzzetti for
her unlimited, never-ending support and inspiration. This
work is based on research supported by the Vienna Sci-
ence and Technology Fund (WWTF) and the City of
Vienna [Grant ID: 10.47379/ICT22060 and Grant ID:
10.47379/ICT19056], the Austrian Science Fund (FWF)
[Grant ID: 10.55776/F8515-N] and SBA Research (SBA-
K1 NGC), a COMET Center within the COMET – Com-
petence Centers for Excellent Technologies Programme
and funded by BMIMI, BMWET, and the federal state
of Vienna. The COMET Programme is managed by FFG.
This work has also been partially supported by the Gov-
ernment of Canada’s New Frontiers in Research Fund
(NFRF), NFRFE-2019-00806, by the project P6 (Open
Technology Programme No. 20475) funded by the Dutch
Research Council (NWO), and by the Dutch Ministry of
Economic Affairs and Climate Policy (EZK) through the
AVR project “FirmPatch”.

References

[1] Keysight Riscure Security Solutions. https://www.keysight.com/.

[2] Ajin Abraham. libsast. https://github.com/ajinabraham/libsast,
2025.

[3] Ajin Abraham, Magaofei, Matan Dobrushin, and Vincent Nadal.
Mobile Security Framework (MobSF). https://github.com/MobSF/
Mobile-Security-Framework-MobSF, 2023.

[4] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lin-
dorfer, Stefano Ortolani, Davide Balzarotti, Giovanni Vigna, and
Christopher Kruegel. When Malware is Packin’ Heat; Limits of
Machine Learning Classifiers Based on Static Analysis Features. In
Proc. of the Network and Distributed System Security Symposium
(NDSS), 2020.

[5] Efthimios Alepis and Constantinos Patsakis. Trapped by the UI:
The Android Case. In Proc. of the International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2017.

[6] Majd Alfhaily. IPATool. https://github.com/majd/ipatool, 2023.

[7] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. AndroZoo: Collecting Millions of Android Apps for the
Research Community. In Proc. of the International Conference on
Mining Software Repositories (MSR), 2016.

[8] Omar Alrawi, Chaz Lever, Mano Antonakakis, and Fabian Mon-
rose. SoK: Security Evaluation of Home-Based IoT Deployments.
In Proc. of the IEEE Symposium on Security and Privacy (S&P),
2019.

[9] Apple Inc. Establishing your app’s integrity | Apple Devel-
oper Documentation. https://developer.apple.com/documentation/
devicecheck/establishing your app s integrity.

[10] Apple Inc. Protected resources | Apple Developer Documenta-
tion. https://developer.apple.com/documentation/bundleresources/
information property list/protected resources.

[11] Ilker Avci. gplay-downloader. https://github.com/ikolomiko/gplay-
downloader, 2023.

[12] Alessandro Bacci, Alberto Bartoli, Fabio Martinelli, Eric Medvet,
and Francesco Mercaldo. Detection of Obfuscation Techniques in
Android Applications. In Proc. of the International Conference on
Availability, Reliability and Security (ARES), 2018.

[13] Stefano Berlato and Mariano Ceccato. A Large-Scale Study on the
Adoption of Anti-Debugging and Anti-Tampering Protections in
Android Apps. Journal of Information Security and Applications,
2020.

[14] bmax121. Apatch. https://github.com/bmax121/APatch, 2024.

[15] Lorenzo Bordoni, Mauro Conti, and Riccardo Spolaor. Mirage:
Toward a Stealthier and Modular Malware Analysis Sandbox for
Android. In Proc. of the European Symposium on Research in
Computer Security (ESORICS), 2017.

[16] Marcus Botacin, Anatoli Kalysch, and André Grégio. The Internet
Banking [in]Security Spiral: Past, Present, and Future of Online
Banking Protection Mechanisms based on a Brazilian case study.
In Proc. of the International Conference on Availability, Reliability
and Security (ARES), 2019.

[17] Alexei Bulazel and Bülent Yener. A Survey On Automated
Dynamic Malware Analysis Evasion and Counter-Evasion: PC,
Mobile, and Web. In Proc. of the Reversing and Offensive-Oriented
Trends Symposium (ROOTS), 2017.

[18] Junsung Cho, Geumhwan Cho, and Hyoungshick Kim. Keyboard
or Keylogger?: A Security Analysis of Third-party Keyboards on
Android. In Proc. of the Annual Conference on Privacy, Security
and Trust (PST), 2015.

[19] Jeremy Clark and Paul C. van Oorschot. SoK: SSL and HTTPS:
Revisiting Past Challenges and Evaluating Certificate Trust Model
Enhancements. In Proc. of the IEEE Symposium on Security and
Privacy (S&P), 2013.

[20] European Commission. Cyber Resilience Act (CRA). https://
digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act, 2022.

[21] European Commission. Digital Operational Resilience Act
(DORA). https://www.eiopa.europa.eu/digital-operational-
resilience-act-dora en, 2023.

[22] Mauro Conti, Vinod P., and Alessio Vitella. Obfuscation detection
in Android applications using deep learning. Journal of Informa-
tion Security and Applications, 70, 2022.

[23] Andrea Continella, Yanick Fratantonio, Martina Lindorfer,
Alessandro Puccetti, Ali Zand, Christopher Kruegel, and Giovanni
Vigna. Obfuscation-Resilient Privacy Leak Detection for Mobile
Apps Through Differential Analysis. In Proc. of the Network and
Distributed System Security Symposium (NDSS), 2017.

[24] Corellium. Corellium virtual hardware. https://www.corellium.
com/.

[25] Aldo Cortesi, Maximilian Hils, and Thomas Kriechbaumer. mitm-
proxy. https://mitmproxy.org/.

[26] Ryan Daws. Corellium enables iOS device virtualisation on
individual accounts. https://www.developer-tech.com/news/2021/
jan/26/corellium-enables-ios-device-virtualisation-individual-
accounts/, 2021.

[27] Yue Duan, Mu Zhang, Abhishek Bhaskar, Heng Yin, Xiaorui Pan,
Tongxin Li, Xueqiang Wang, and Xiaofeng Wang. Things You
May Not Know About Android (Un)Packers: A Systematic Study
based on Whole-System Emulation. In Proc. of the Network and
Distributed System Security Symposium (NDSS), 2018.

[28] Nathan S. Evans, Azzedine Benameur, and Yun Shen. All your
Root Checks are Belong to Us: The Sad State of Root Detection.
In Proc. of the ACM International Symposium on Mobility Man-
agement and Wireless Access (MobiWac), 2015.

[29] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner,
Bernd Freisleben, and Matthew Smith. Why Eve and Mallory Love
Android: An Analysis of Android SSL (In)Security. In Proc. of the
ACM Symposium on Information, Computer and Communications
Security (CCS), 2012.

[30] Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke
Lee. Cloak and Dagger: From Two Permissions to Complete
Control of the UI Feedback Loop. In Proc. of the IEEE Symposium
on Security and Privacy (S&P), 2017.

[31] Bogo Giertler. Hacking native ARM64 binaries to run on the iOS
Simulator. https://bogo.wtf/arm64-to-sim.html, 2021.

[32] Google LLC. About the SafetyNet Attestation API deprecation
| Android Developers. https://developer.android.com/privacy-and-
security/safetynet/deprecation-timeline.

[33] Google LLC. Manifest.permission | Android Developers. https:
//developer.android.com/reference/android/Manifest.permission.

https://www.keysight.com/
https://github.com/ajinabraham/libsast
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/majd/ipatool
https://developer.apple.com/documentation/devicecheck/establishing_your_app_s_integrity
https://developer.apple.com/documentation/devicecheck/establishing_your_app_s_integrity
https://developer.apple.com/documentation/bundleresources/information_property_list/protected_resources
https://developer.apple.com/documentation/bundleresources/information_property_list/protected_resources
https://github.com/ikolomiko/gplay-downloader
https://github.com/ikolomiko/gplay-downloader
https://github.com/bmax121/APatch
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://www.eiopa.europa.eu/digital-operational-resilience-act-dora_en
https://www.eiopa.europa.eu/digital-operational-resilience-act-dora_en
https://www.corellium.com/
https://www.corellium.com/
https://mitmproxy.org/
https://www.developer-tech.com/news/2021/jan/26/corellium-enables-ios-device-virtualisation-individual-accounts/
https://www.developer-tech.com/news/2021/jan/26/corellium-enables-ios-device-virtualisation-individual-accounts/
https://www.developer-tech.com/news/2021/jan/26/corellium-enables-ios-device-virtualisation-individual-accounts/
https://bogo.wtf/arm64-to-sim.html
https://developer.android.com/privacy-and-security/safetynet/deprecation-timeline
https://developer.android.com/privacy-and-security/safetynet/deprecation-timeline
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission

[34] Google LLC. Play Integrity API | Google Play. https://developer.
android.com/google/play/integrity.

[35] Google LLC. Provide information for Google Play’s Data safety
section. https://support.google.com/googleplay/android-developer/
answer/10787469#independent security review.

[36] Google LLC. SafetyNet Attestation API | Android Developers.
https://developer.android.com/training/safetynet/attestation.

[37] Google LLC. Cydia Substrate - Android Apps on Google Play.
https://play.google.com/store/apps/details?id=com.saurik.substrate,
2013. Archived at https://web.archive.org/web/20170110195857/
https://play.google.com/store/apps/details?id=com.saurik.substrate.

[38] Google LLC. codesearch: Fast, indexed regexp search over large
file trees. https://github.com/google/codesearch, 2020.

[39] Mahmoud Hammad, Joshua Garcia, and Sam Malek. A Large-
Scale Empirical, Study on the Effects of Code Obfuscations on
Android Apps and Anti-Malware Products. In Proc. of the Inter-
national Conference on Software Engineering (ICSE), 2018.

[40] Vincent Haupert, Dominik Maier, Nicolas Schneider, Julian Kirsch,
and Tilo Müller. Honey, I Shrunk Your App Security: The State of
Android App Hardening. In Proc. of the Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA),
2018.

[41] hzzheyang. strongr-frida-android. https://github.com/hzzheyang/
strongR-frida-android, 2024.

[42] Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi. Safe-
tyNOT: On the Usage of the SafetyNet Attestation API in Android.
In Proc. of the Annual International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys), 2021.

[43] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu.
Morpheus: Automatically Generating Heuristics to Detect Android
Emulators. In Proc. of the Annual Computer Security Applications
Conference (ACSAC), 2014.

[44] Anatoli Kalysch, Davide Bove, and Tilo Müller. How Android’s UI
Security is Undermined by Accessibility. In Proc. of the Reversing
and Offensive-Oriented Trends Symposium (ROOTS), 2018.

[45] Ansgar Kellner, Micha Horlboge, Konrad Rieck, and Christian
Wressnegger. False Sense of Security: A Study on the Effectivity
of Jailbreak Detection in Banking Apps. In Proc. of the IEEE
European Symposium on Security and Privacy (EuroS&P), 2019.

[46] Konrad Kollnig, Anastasia Shuba, Reuben Binns, Max Van Kleek,
and Nigel Shadbolt. Are iPhones Really Better for Privacy? A
Comparative Study of iOS and Android Apps. In Proc. on Privacy
Enhancing Technologies (PETS), 2022.

[47] Brian Kondracki, Babak Amin Azad, Najmeh Miramirkhani, and
Nick Nikiforakis. The Droid is in the Details: Environment-aware
Evasion of Android Sandboxes. In Proc. of the 29th Network and
Distributed System Security Symposium (NDSS), 2022.

[48] Shuang Li, Rui Li, Shishuai Yang, and Wenrui Diao. Android’s
Cat-and-Mouse Game: Understanding Evasion Techniques against
Dynamic Analysis. In Proc. of the IEEE International Symposium
on Software Reliability Engineering (ISSRE), 2024.

[49] Xinyue Liang and Jun Ma. A Study on Screen Logging Risks
of Secure Keyboards of Android Financial Apps. In Proc. of the
IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2022.

[50] Jae-do Lim, Il-kyu Kim, Namsu Kim, BooJoong Kang, and Seong-
je Cho. A Study on Android Emulator Detection Using Build
Properties. In Proc. of the International Conference on Next
Generation Computing, 2022.

[51] Chia-Chi Lin, Hongyang Li, Xiao-yong Zhou, and XiaoFeng Wang.
Screenmilker: How to Milk Your Android Screen for Secrets. In
Proc. of the Network and Distributed System Security Symposium
(NDSS), 2014.

[52] Jie Lin, Chuanyi Liu, and Binxing Fang. Out-of-Domain Char-
acteristic Based Hierarchical Emulator Detection for Mobile. In
Proc. of the International Conference on Information Technologies
and Electrical Engineering (ICITEE), 2020.

[53] Dominik Maier, Mykola Protsenko, and Tilo Müller. A Game
of Droid and Mouse: The Threat of Split-Personality Malware on
Android. Computers & Security, 2015.

[54] Prianka Mandal, Amit Seal Ami, Victor Olaiya, Sayyed Hadi
Razmjo, and Adwait Nadkarni. ”Belt and suspenders” or ”just
red tape”?: Investigating Early Artifacts and User Perceptions of
IoT App Security Certification. In Proc. of the USENIX Security
Symposium, 2024.

[55] Guozhu Meng, Yinxing Xue, Chandramohan Mahinthan, An-
namalai Narayanan, Yang Liu, Jie Zhang, and Tieming Chen.
Mystique: Evolving Android Malware for Auditing Anti-Malware
Tools. In Proc. of ACM ASIA Conference on Computer and
Communications Security (ACM AsiaCCS), 2016.

[56] O. Mirzaei, J. M. de Fuentes, J. Tapiador, and L. Gonzalez-
Manzano. AndrODet: An adaptive Android Obfuscation Detector.
Future Generation Computer Systems, 2019.

[57] Alireza Mohammadinodooshan, Ulf Kargén, and Nahid Shahmehri.
Robust Detection of Obfuscated Strings in Android Apps. In Proc.
of the ACM Workshop on Artificial Intelligence and Security, 2019.

[58] Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Inv-
ernizzi, Jacopo Corbetta, Dhilung Kirat, Christopher Kruegel, and
Giovanni Vigna. BareDroid: Large-Scale Analysis of Android
Apps on Real Devices. In Proc. of the Annual Computer Security
Applications Conference (ACSAC), 2015.

[59] Sebastian Neuner, Victor Van der Veen, Martina Lindorfer, Markus
Huber, Georg Merzdovnik, Martin Mulazzani, and Edgar Weippl.
Enter Sandbox: Android Sandbox Comparison. In Proc. of the
IEEE Mobile Security Technologies Workshop (MoST), 2014.

[60] OWASP Foundation, Inc. OWASP MASVS v2.0.0. https://github.
com/OWASP/owasp-masvs/releases/tag/v2.0.0, 2023.

[61] OWASP Foundation, Inc. OWASP MAS Crackmes Android. https:
//mas.owasp.org/crackmes/Android, 2024.

[62] OWASP Foundation, Inc. OWASP MAS Crackmes iOS. https:
//mas.owasp.org/crackmes/iOS, 2024.

[63] OWASP Foundation, Inc. OWASP MASTG. https://mas.owasp.
org/MASTG/, 2024.

[64] palera1n. palera1n. https://palera.in/.

[65] Minjae Park, Geunha You, Seong-je Cho, Minkyu Park, and
Sangchul Han. A Framework for Identifying Obfuscation Tech-
niques applied to Android Apps using Machine Learning. Journal
of Wireless Mobile Networks, Ubiquitous Computing, and Depend-
able Applications, 2019.

[66] Mike Peterson. iOS 14 introduces new ’App Attest’ API to cut
down on app fraud. https://appleinsider.com/articles/20/08/18/ios-
14-introduces-new-app-attest-api-to-cut-down-on-app-fraud,
2020.

[67] Stephan Petzl. Accessing Launch Environment and Launch
Arguments in Xcode UI Tests. https://www.repeato.app/accessing-
launch-environment-and-launch-arguments-in-xcode-ui-tests/,
2024.

[68] Amogh Pradeep, Muhammad Talha Paracha, Protick Bhowmick,
Ali Davanian, Abbas Razaghpanah, Taejoong Chung, Martina
Lindorfer, Narseo Vallina-Rodriguez, Dave Levin, and David
Choffnes. A Comparative Analysis of Certificate Pinning in
Android & iOS. In Proc. of the ACM Internet Measurement
Conference (IMC), 2022.

[69] radare.org. Radare2: Libre Reversing Framework for Unix Geeks.
https://github.com/radareorg/radare2, 2022.

[70] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. DroidChameleon:
Evaluating Android Anti-malware Against Transformation Attacks.
In Proc. of ACM ASIA Conference on Computer and Communica-
tions Security (ACM AsiaCCS), 2013.

[71] Bradley Reaves, Jasmine Bowers, Nolen Scaife, Adam Bates,
Arnav Bhartiya, Patrick Traynor, and Kevin R. B. Butler. Mo(bile)
Money, Mo(bile) Problems: Analysis of Branchless Banking Ap-
plications. ACM Transactions on Privacy and Security (TOPS),
2017.

[72] RedNaga. APKiD. https://github.com/rednaga/APKiD, 2022.

[73] Wojciech Reguła. Iossecuritysuite. https://github.com/securing/
IOSSecuritySuite.

[74] rovo89. Xposed framework. https://github.com/rovo89/Xposed,
2017.

https://developer.android.com/google/play/integrity
https://developer.android.com/google/play/integrity
https://support.google.com/googleplay/android-developer/answer/10787469#independent_security_review
https://support.google.com/googleplay/android-developer/answer/10787469#independent_security_review
https://developer.android.com/training/safetynet/attestation
https://play.google.com/store/apps/details?id=com.saurik.substrate
https://web.archive.org/web/20170110195857/https://play.google.com/store/apps/details?id=com.saurik.substrate
https://web.archive.org/web/20170110195857/https://play.google.com/store/apps/details?id=com.saurik.substrate
https://github.com/google/codesearch
https://github.com/hzzheyang/strongR-frida-android
https://github.com/hzzheyang/strongR-frida-android
https://github.com/OWASP/owasp-masvs/releases/tag/v2.0.0
https://github.com/OWASP/owasp-masvs/releases/tag/v2.0.0
https://mas.owasp.org/crackmes/Android
https://mas.owasp.org/crackmes/Android
https://mas.owasp.org/crackmes/iOS
https://mas.owasp.org/crackmes/iOS
https://mas.owasp.org/MASTG/
https://mas.owasp.org/MASTG/
https://palera.in/
https://appleinsider.com/articles/20/08/18/ios-14-introduces-new-app-attest-api-to-cut-down-on-app-fraud
https://appleinsider.com/articles/20/08/18/ios-14-introduces-new-app-attest-api-to-cut-down-on-app-fraud
https://www.repeato.app/accessing-launch-environment-and-launch-arguments-in-xcode-ui-tests/
https://www.repeato.app/accessing-launch-environment-and-launch-arguments-in-xcode-ui-tests/
https://github.com/radareorg/radare2
https://github.com/rednaga/APKiD
https://github.com/securing/IOSSecuritySuite
https://github.com/securing/IOSSecuritySuite
https://github.com/rovo89/Xposed

[75] Antonio Ruggia, Dario Nisi, Savino Dambra, Alessio Merlo, Da-
vide Balzarotti, and Simone Aonzo. Unmasking the Veiled: A
Comprehensive Analysis of Android Evasive Malware. In Proc. of
ACM ASIA Conference on Computer and Communications Security
(ACM AsiaCCS), 2024.

[76] SaurikIT, LLC. Cydia Substrate. http://www.cydiasubstrate.com/.

[77] Bruce Schneier. Beyond Fear: Thinking Sensibly about Security in
an Uncertain World. Springer-Verlag, Berlin, Heidelberg, 2003.

[78] Silvia Sebastián and Juan Caballero. AVclass2: Massive Malware
Tag Extraction from AV Labels. In Proc. of the Annual Computer
Security Applications Conference (ACSAC), 2020.

[79] Jan Seredynski. Demystifying typical mobile game cheats.
https://www.guardsquare.com/blog/demystifying-typical-mobile-
game-cheats, 2021.

[80] Vikas Sihag, Manu Vardhan, and Pradeep Singh. A Survey of
Android Application and Malware Hardening. Computer Science
Review, 2021.

[81] Sileo Team. Sileo. https://getsileo.app/.

[82] Squid. Squid : Optimising Web Delivery. http://www.squid-cache.
org/.

[83] Magdalena Steinböck, Jakob Bleier, Mikka Rainer, Tobias Urban,
Christine Utz, and Martina Lindorfer. Comparing Apples to An-
droids: Discovery, Retrieval, and Matching of iOS and Android
Apps for Cross-Platform Analyses. In Proc. of the International
Conference on Mining Software Repositories (MSR), 2024.

[84] San-Tsai Sun, Andrea Cuadros, and Konstantin Beznosov. An-
droid Rooting: Methods, Detection, and Evasion. In Proc. of the
ACM CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices, 2015.

[85] Dewen Suo, Lei Xue, Runze Tan, Weihao Huang, and Guozi Sun.
ARAP: Demystifying Anti Runtime Analysis Code in Android
Apps. arXiv preprint arXiv:2408.11080, 2024.

[86] talsec. Freerasp. https://github.com/talsec/Free-RASP-iOS.

[87] Connor Tumbleson. Apktool - A tool for reverse engineering 3rd
party, closed, binary Android apps. https://ibotpeaches.github.io/
Apktool/, 2022.

[88] Ole André Vadla Ravnås. Frida. https://frida.re/.

[89] Timothy Vidas and Nicolas Christin. Evading Android Runtime
Analysis via Sandbox Detection. In Proc. of ACM ASIA Conference
on Computer and Communications Security (ACM AsiaCCS), 2014.

[90] Liu Wang, Haoyu Wang, Ren He, Ran Tao, Guozhu Meng, Xiapu
Luo, and Xuanzhe Liu. MalRadar: Demystifying Android Malware
in the New Era. Proc. of the ACM on Measurement and Analysis
of Computing Systems, 2022.

[91] WithSecure. A Guide to Repacking iOS Applications.
https://labs.withsecure.com/publications/repacking-and-resigning-
ios-applications, 2018.

[92] Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Ding-
hao Wu, and Yajin Zhou. Parema: An Unpacking Framework
for Demystifying VM-Based Android Packers. In Proc. of the
ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2021.

[93] Lei Xue, Hao Zhou, Xiapu Luo, Yajin Zhou, Yang Shi, Guofei Gu,
Fengwei Zhang, and Man Ho Au. Happer: Unpacking Android
Apps via a Hardware-Assisted Approach. In Proc. of the IEEE
Symposium on Security and Privacy (S&P), 2021.

[94] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong
Li, Wenjun Hu, and Dawu Gu. AppSpear: Bytecode Decrypting
and DEX Reassembling for Packed Android Malware. In Proc.
of the International Symposium on Recent Advances in Intrusion
Detection (RAID), 2015.

[95] Swaroop Yermalkar. OWASP iGoat. https://github.com/OWASP/
iGoat-Swift, 2021.

[96] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. DexHunter: To-
ward Extracting Hidden Code from Packed Android Applications.
In Proc. of the European Symposium on Research in Computer
Security (ESORICS), 2015.

[97] Min Zheng, Patrick P. C. Lee, and John C. S. Lui. ADAM:
An Automatic and Extensible Platform to Stress Test Android
Anti-virus Systems. In Proc. of the Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA),
2013.

[98] Onur Zungur, Antonio Bianchi, Gianluca Stringhini, and Manuel
Egele. AppJitsu: Investigating the Resiliency of Android Applica-
tions. In Proc. of the IEEE European Symposium on Security and
Privacy (EuroS&P), 2021.

Appendix

1. Extended Evaluation Results

Build checks. Table 5 shows the most common Build
checks in our Android dataset. FINGERPRINT, TAGS,
TYPE and DEVICE were present in over 70% of apps.

TABLE 5: Most common Build checks on Android.

Variable Value Occurrence

FINGERPRINT contains(generic) 94.6%
TAGS contains(dev-keys || test-keys) 85.0%
TYPE equals(eng || userdebug) 81.5%
TAGS contains(test-keys) 72.1%
TAGS contains(dev-keys) 71.8%
DEVICE startsWith(generic) 70.0%
PRODUCT contains(sdk) 68.2%
BRAND startsWith(generic) 66.2%
MANUFACTURER contains(Genymotion) 65.7%
HARDWARE contains(ranchu) 49.1%

Root- and jailbreak detection checks. Table 6 shows
the most frequently searched apps associated with root
and jailbreak detection. On Android, apps primarily check
for the presence of SuperSu and similar apps, whereas on
iOS they mostly look for package managers like Cydia.
In Table 7 we list the most commonly searched files on
both platforms. Similarly, on Android, apps predominantly
search for files related to the su-binary, while on iOS, they
look for artifacts indicative of jailbreaking (e.g., directo-
ries with different permissions) and package managers.

TABLE 6: Common detections of root- and jailbreak-
related apps. The most commonly searched for app is
supersu on Android and Cydia on iOS.

Android Occur. iOS Occur.

eu.chainfire.supersu 13.4% Cydia 28.3%
com.noshufou.android.su 13.4% Icy 5.5%
com.koushikdutta.superuser 13.2% blackra1n 5.5%
com.thirdparty.superuser 13.2% RockApp 5.4%
com.devadvance.rootcloakplus 10.0% Sileo 2.0%
com.devadvance.rootcloak 10.0% Undecimus 1.9%
com.noshufou.android.su.elite 7.5% Zebra 0.1%
com.yellowes.su 7.5%
com.ramdroid.appquarantine 5.7%
com.topjohnwu.magisk 2.0%

Obfuscators and packers. Table 8 and Table 9 show the
most frequently observed obfuscators and packers respec-
tively in our full dataset, apps that completed analysis and
the industry dataset. Overall, the prevalence of packers and
obfuscators was low. The most common obfuscator in our
datasets was DexGuard 9.x and the most common packers
were DexProtector and Promon Shield.
Third-party libraries. Table 10 shows the most popular
third-party libraries in our Android dataset. We found

http://www.cydiasubstrate.com/
https://www.guardsquare.com/blog/demystifying-typical-mobile-game-cheats
https://www.guardsquare.com/blog/demystifying-typical-mobile-game-cheats
https://getsileo.app/
http://www.squid-cache.org/
http://www.squid-cache.org/
https://github.com/talsec/Free-RASP-iOS
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://frida.re/
https://labs.withsecure.com/publications/repacking-and-resigning-ios-applications
https://labs.withsecure.com/publications/repacking-and-resigning-ios-applications
https://github.com/OWASP/iGoat-Swift
https://github.com/OWASP/iGoat-Swift

TABLE 7: Common detections of root- and jailbreak-
related files. On Android, most apps search for the su-
binary, while on iOS, they look for apps and artifacts
in relation to jailbreaking. * This directory also exist on
normal devices, but might have different permissions.

Android files iOS files

1 /system/app/Superuser.apk /private*
2 /system/xbin/su /Applications/Cydia.app
3 /system/bin/su /etc/apt
4 /sbin/su /bin/bash
5 /data/local/xbin/su /Applications/RockApp.app
6 /data/local/bin/su /Applications/Icy.app
7 /data/local/su /Applications/blackra1n.app
8 /system/sd/xbin/su /system/library/launchdaemons
9 /system/bin/failsafe/su /var/lib/cydia
10 /su/bin/su /usr/libexec/sftp-server

TABLE 8: Most common obfuscators in the popular apps
dataset [83], our dataset as evaluated, and the dataset
from our industry partner (Industry Dataset). Note that
Obfuscator-LLVM is grouped with all various versions
that were found. DexGuard 9.x and Arxan are the most
common obfuscators in the full and industry dataset, while
Kiwi encrypter is most common in the analyzed dataset.
Name Popular Apps Analyzed Industry
DexGuard 9.x 52 31 4
Arxan 52 29 1
Kiwi encrypter 44 35 0
Obfuscator-LLVM 39 19 1
DexGuard 28 22 2
Obfuscator-LLVM (string encryption) 19 16 0
DexProtector 12 2 1
ADVobfuscator 4 3 0
Alipay 4 4 0
Allatori demo 2 2 0
Gemalto 2 1 0
Hikari 1 1 0
Safeengine LLVM 1 1 0

TABLE 9: Most common packers in the popular apps
dataset [83], our analyzed dataset, and the dataset from
our industry partner. DexProtector and Promon Shield are
the most common packers used.
Name Popular Apps Analyzed Industry
DexProtector 14 3 1
Promon Shield 14 0 1
Ijiami 4 0 0
UPX 4 0 0
yidun 4 1 0
LIAPP 4 1 0
SecNeo.B 2 0 0
AppSealing 2 1 0
Bangcle 2 0 0
CrackProof 2 0 0
Bangcle (SecShell) 1 1 0
DxShield 1 0 0
SecNeo.A 1 0 0
AppGuard 1 0 0
Baidu 0 0 0

Google Mobile Services in over 96% of the apps, as well
as Firebase and Facebook libraries in around half of our
dataset, all implementing a range of hardening techniques.
In Table 11 we list the most popular third-party libraries in
our iOS dataset. In contrast to Android, most of them only
implement root detection, except for UnityFramework,
which also implements additional hardening techniques.

2. Case Study: Malware Samples

Table 12 shows the Android malware samples we eval-
uated including their hash values and family classification.

TABLE 10: Most popular third-party Android libraries
with implemented hardening techniques (in %). Google
Mobile Services is present in almost every app in our
dataset and provides debug, emulation and root detection.

Library Occ. A
nt

i-
de

bu
g

A
nt

i-
em

ul
at

io
n

A
nt

i-
ho

ok
in

g

A
nt

i-
ke

yl
og

ge
r

C
er

t.
Pi

nn
in

g

A
nt

i-
ro

ot
A

nt
i-

ta
m

pe
r

com.google.android.gms 96.3 76.0 96.1 2.6 — 0.04 59.8 0.04
com.google.firebase 55.4 53.7 53.0 9.5 — — 55.2 9.4
com.facebook 49.4 0.6 46.9 0.2 — — 9.5 —
com.unity3d 47.4 42.6 0.2 — — — 26.9 —
audience network.com.
facebook.ads.redexgen.X 43.8 43.8 — — — — — —

com.google.android.play.core 43.6 — 43.6 — — — — —
com.applovin 38.6 1.8 38.6 — 0.3 — 4.3 —
com.ironsource 37.8 37.8 — — — — 2.3 —
libcrashlytics-common.so 35.5 35.5 — — — — — —
com.appsflyer 33.1 — — 33.1 — — — —

TABLE 11: Most popular third-party iOS libraries with
implemented hardening techniques (in %). All libraries
implement root detection. Only UnityFramework imple-
ments a wider range of hardening techniques.

Library Occ. A
nt

i-
de

bu
g

A
nt

i-
em

ul
at

io
n

A
nt

i-
ho

ok
in

g

A
nt

i-
ke

yl
og

ge
r

C
er

t.
Pi

nn
in

g

A
nt

i-
ro

ot

A
nt

i-
ta

m
pe

r

GoogleUtilities 44.1 — — — — — 44.1 —
FirebaseCore 39.2 — — — — — 39.2 —
GoogleDataTransport 37.3 — — — — — 37.3 —
FirebaseCrashlytics 32.3 — — — — — 32.3 —
UnityFramework 32.0 3.4 — 1.5 31.9 — 28.2 0.1
FBSDKLoginKit 28.0 — — — — — 28.0 —
FirebaseRemoteConfig 20.0 — — — — — 20.0 —
FirebaseCoreDiagnostics 17.5 — — — — — 17.5 —
FirebaseMessaging 17.3 — — — — — 17.3 —
FBSDKCoreKit 16.6 — — — — — 16.6 —

TABLE 12: Analyzed malware samples with MD5 hashes,
families and results (static/dynamic). Results in brackets
are unconfident. Cells with a value are highlighted.

MD5 Family A
nt

i-
de

bu
g

A
nt

i-
em

ul
at

io
n

A
nt

i-
ho

ok
in

g
A

nt
i-

ke
yl

og
ge

r
C

er
t.

Pi
nn

in
g

A
nt

i-
ro

ot
A

nt
i-

ta
m

pe
r

A910F32D6563FFA-
425F192581154903B joker

4/2
(1/0)

8/0
(0/0)

0/0
(0/0)

2/2
(0/0)

0/1
(0/1)

1/2
(0/0)

1/1
(1/1)

2C7AC97977EFA55-
278FC4D5CF83D78B9 joker

5/0
(2/0)

3/0
(0/0)

0/0
(0/0)

1/0
(1/0)

0/0
(0/0)

1/0
(0/0)

1/0
(1/0)

274535A08A0D06F-
8F1F3552C33FB8EEF spyagent

0/0
(0/0)

0/0
(0/0)

0/1
(0/1)

0/0
(0/0)

0/2
(0/2)

0/0
(0/0)

0/0
(0/0)

547217D768CA6A4-
6B00FC02F1AB7FB56 spyagent

3/0
(2/0)

28/0
(0/0)

0/0
(0/0)

1/0
(0/0)

0/0
(0/0)

21/0
(0/0)

1/0
(1/0)

79F681872CCC356-
4D587EDB090A0A3E3 spyagent

2/0
(2/0)

8/7
(0/0)

4/3
(0/1)

1/0
(1/0)

0/2
(0/2)

2/19
(0/0)

1/1
(1/1)

D4F4B00C3DBCF19-
71695E452DB3916B1 smsthief

1/0
(1/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

E992789EEAB04E0-
B0E862BF9A4F40233 smsthief

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

B25A4B632098DB2-
AA0A075BDA3958B27 necro

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

F21A53C259B48FE-
3B73CBBED1C18BE0F necro

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

845A0C355381D4D-
DF96874E5075F3356 necro

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

0/0
(0/0)

	Introduction
	Hardening Against Run-time Threats
	Threat Model
	Hardening Techniques

	Haly: Framework Design
	Pre-processing
	Static Analysis
	Dynamic Analysis
	Tracking Hardening Techniques
	Post-processing

	Framework Validation
	Empirical Study
	Dataset
	Prevalence of Hardening Techniques
	Android Emulator vs. Rooted Device
	Applications with Advanced Protections
	Android vs. iOS Adoption

	Discussion
	Insights
	Trends

	Limitations & Future Work
	Related Work
	Conclusion
	References
	Appendix
	Extended Evaluation Results
	Case Study: Malware Samples

