
Toward Automatically Generating User-specific Recovery Procedures after
Windows Malware Infections

Jerre Starink
University of Twente

Enschede, The Netherlands
j.a.l.starink@utwente.nl

Cassie Wanjun Xu
TU Delft

Delft, The Netherlands
cassiexu0215@gmail.com

Andrea Continella
University of Twente

Enschede, The Netherlands
a.continella@utwente.nl

Abstract—Despite significant advancements in proactive mal-
ware detection and prevention, complete prevention of mal-
ware infiltration remains unattainable. Once malware is
present on a system, it can make persistent changes that af-
fect its stability, making user-specific recovery post-infection
an important problem to address. Current solutions involve
extensive monitoring to precisely pinpoint the changes that
malware has made, which are impractical for home envi-
ronments due to their high resource demands. This paper
introduces a prototype for automatically generating user-
specific malware recovery procedures that fully operates
post-mortem. By leveraging forensic data collected on Win-
dows by default, we replicate the original conditions under
which the malware executed in a sandbox and automat-
ically infer the exact system resources that the malware
changed without imposing additional performance burdens
on the user’s machine. We test a prototype against 894 real-
world malware samples and three real-world, environment-
sensitive malware campaigns, and achieve a full recovery rate
of 51.3% even with no additional monitoring enabled. We
conclude by sharing insights on the importance of machine
replication and sandbox configurability in future malware
research.

Index Terms—Malware, Recovery, Malicious Behaviors

1. Introduction

Despite years of research put into malware analysis
and infection prevention, we still face the threat of mal-
ware entering our computer systems [2].

One of the first lines of defense against malware
on a user’s machine is antivirus (AV) software. Typical
AV inspects files statically for known threats (signatures)
and performs lightweight system monitoring to look for
anomalies. Over the past years, academic work has mainly
focused on improving this proactive detection of mal-
ware [32]. While advances have been significant, it is
impossible to fully prevent all malware from entering the
system. Furthermore, even if AV detects malware retroac-
tively (e.g., via updated signatures or heuristics), malware
may still have had enough time to apply persistent changes
to the system, such as dropping malicious files or chang-
ing critical settings that alter system behavior, potentially
leaving the system in an unstable state.

With malware infections being imminent, recovery
post-infection, that is, reverting any persistent system

changes that the malware had applied, is crucial. However,
research into this has been limited and require extensive
monitoring or snapshots provided by End-Point Detection
and Response (EDR) systems or similar [15], [16], [40].
This makes them an excellent solution for servers or
enterprise environments. However, for the typical home
user, this quickly becomes infeasible as full-system mon-
itoring has massive computational power or disk space
requirements, two features home systems typically lack.

An alternative approach is to analyze the malware
post-mortem. After identification, the required recovery
steps can be inferred by putting the malware in a sandbox
and monitor its behavior from there instead [30], [31].
As the sandbox does not run continuously on the user
machine, it does not sacrifice performance or disk space.
However, a key limitation is that malware often features
non-determinism. It may drop files with random names,
change its behavior depending on the environment it runs
in [1], or perform actions specific to a certain target
audience [6], [21], [28]. This limits the specificity of the
derived recovery steps, making it difficult to directly apply
them to the user machine.

In this paper we extend the idea of post-mortem
recovery step procedure generation by proposing work-
in-progress prototype framework that fills in the missing
details, allowing for user-specific recovery. Before running
the sample in a sandbox, we first profile the user machine
to replicate the conditions the malware originally ran
under in a VM. We then collect forensic data on the user
machine collected by the operating system by default,
and automatically cross reference this with the sandbox
report. This way, we automatically generate user-specific
recovery steps that requires no additional extra monitoring
software to be active and thus incurs zero overhead. We
implement a prototype and measure its efficacy by testing
it on 894 malware samples found in the wild, as well as
three well-known malware campaigns that are known to
be environment sensitive. We show that, even without any
extra monitoring installed, we can identify and recover
51.3% of all persistent system changes completely, and
demonstrate the necessity for a sandbox to be configured
and customized to the user machine to make the full
recovery procedure as complete as possible.

In short, we make the following contributions:

• We propose a prototype framework that leverages
forensic data to replicate a machine in a sandbox
to generate user-specific malware recovery proce-

dures post-infection with zero overhead.
• We implement our framework and test it against

894 malware samples found in the wild and three
real-world, environment sensitive malware cam-
paigns.

• We conclude by sharing insights on the importance
of machine replication and sandbox configurability
for future malware analysis research.

We release the data and source code of our prototype
at https://github.com/utwente-scs/malware-remediation.

2. Background

Malware recovery post-infection involves reverting the
persistent changes that malware has applied to the user
machine that survive after neutralization. These may in-
clude created, deleted or changed files, as well as settings
that have been modified by the malware, e.g., to survive
reboots or compromise security [42]. The goal of malware
recovery is to restore the machine to a stable state.

One approach to recover from infection is to revert the
system to a known clean state, e.g., by using backups or
performing a complete system reinstall. However, while
this ensures all malicious persistent changes are removed,
it also risks benign user changes to be lost as well. Further-
more, running back-ups periodically requires lots of disk
space, and it is not always clear how far back a system
has to be rolled back as malware can stay dormant for
long periods of time [8], [20]. A more targeted recovery
strategy is to identify files that match a known signature
or exhibit some known malicious behavior. However, this
may result in insufficient recovery, as signatures are often
incomplete and may not recognize malicious intend or
capture all the changes. In the ideal scenario, the ma-
chine is equipped with extensive behavioral analysis, e.g.,
provided by Endpoint Detection and Response (EDR),
that continuously tracks all persistent changes on the
system over time. However, this scenario is infeasible for
home users, as continuous monitoring incurs significant
space and runtime overhead, especially on machines with
relatively limited storage or compute power. Finally, mal-
ware samples can be reverse engineered post-infection to
infer its past behavior retroactively. However, doing this
manually requires expert knowledge, and automating this
comes with a challenge of malware often featuring non-
determinism. Malware may be environment sensitive and
change its behavior depending on the system state and
configuration [1]. Furthermore, it may also randomize the
names of dropped files or Registry keys, which compli-
cates inferring the changes it specifically made and thus
impedes generating user-specific recovery procedures.

3. Methodology

We now present our methodology to automatically
generate user-specific recovery procedures for an infected
machine. Our intended target audience is a home user
that has a machine with limited computation and space
capacity. In our threat model, we assume the infection on
the user’s machine has already happened. We also assume
that the user was running a basic antivirus solution (e.g.,
Windows Defender) that was not able to detect malware

User Machine

malware.exe

System Logs

Environmental
Metadata

Sandbox

Machine
Replication

Behavioral
Analysis

Cross-
Examination Generation

Sandbox
Report

Forensics
Report

Figure 1: Overview of the approach. We use environmen-
tal data to replicate the user machine and system logs to
generate user-specific recovery procedures.

successfully immediately, but identified the malware sam-
ple post-infection (e.g., via a static scan with an updated
signature database, or via a behavioral anomaly heuristic
at runtime), and neutralized it (e.g., by killing or quar-
antining it). Finally, we also assume no extra monitoring
or backup services were set up beforehand (Section 2),
and thus, we require a fully post-mortem approach. The
end-goal is to generate directly applicable recovery steps
that revert the persistent system changes made by the
malware which directly impede normal operation of the
user machine. Note that this does not include the recovery
of encrypted or corrupted user files (which are often the
target of e.g., Ransomware attacks). We intend to restore
the system into a state that is clean of infections and stable
again for daily use.

Since malware developers often obfuscate or pack
their samples, static analysis is not feasible. Therefore,
we resort to dynamic analysis where we run the sample
a second time in a sandbox and recording all persistent
changes. We use the key insight that modern operating
systems feature many built-in sub systems that produce
forensic data similar enough to the sandbox output to be
able to cross-reference between them, solving the prob-
lem of non-determinism. Many of these sub systems are
enabled by default and require no installation in advance.

Fig. 1 depicts our approach on a high level. We first
replicate the user machine in a sandbox and run the sample
in it to extract its persistent behavior. Then, we cross-
reference the behavioral data with forensic evidence found
on the user machine. Finally, we translate the changes
made to the sandbox to changes on the user machine and
generate recovery steps for each of them.

Machine Replication. We first construct a profile of the
user machine by collecting environmental metadata (such
as hardware information, user accounts, as well as the
malware sample itself), and copying it into a Virtual Ma-
chine (VM). This has two main goals. Firstly, replicating
the original conditions maximizes the chance the sample
activating itself again a second time. Secondly, to generate
user-specific recovery procedures, we need a trace that is
representative to the user machine. Replication ensures
that system resources (i.e., files and Registry keys) on the
real machine will reside at a similar locations as in the
VM, making cross-referencing more reliable.

Behavioral Analysis. We then use the VM as the base
snapshot for a sandbox to rerun the sample in and au-
tomatically record the behavior that the sample exhibits
during its execution. In particular, we specifically filter on
system APIs involved in adding, modifying or removing

https://github.com/utwente-scs/malware-remediation

files and Registry keys, as these pertain to the persistent
changes malware can make to the system.
Cross-Examination. After behavioral analysis, we auto-
matically map the accessed, modified or deleted resources
in the sandbox to forensic evidence found on the user
machine. For modified and deleted system resources, this
can be done by comparing their paths, as they will reside
in the same location. However, for newly created files,
a direct comparison of file paths is not always possible
as file names the malware may drop files to may be
randomized. The insight that we use here is that while file
paths may be randomized, their contents are very likely
going to be similar if not equal. A typical way to prove
file equivalence is using a cryptographic hash algorithm
(e.g., SHA256). However one single byte change in the
file results in a completely different hash, rendering it
unreliable for correlating files across systems that are near-
identical. Therefore, instead we leverage fuzzy hash-based
file contents similarity tests [19] to automatically map
newly created files in the sandbox machine to files on the
user machine, and define a similarity threshold parameter
indicating the minimum required similarity score two files
should have for them to be considered equivalent.
Generation. Finally, using the actions observed and the
constructed system resource mapping, we automatically
generate the final recovery steps. For every persistent
change reported by the sandbox, we first invert all the
recorded operations. This means for any file or Registry
key created by the malware in the sandbox, we generate
a file or Registry deletion step. Similarly, for modified or
deleted resources, we generate a file or Registry creation
step, where we pull the original data from a reference
system, i.e., a fresh installation of the operating system
which is known to be clean and stable. To ensure that the
remediation steps are directly applicable to the user ma-
chine, we apply the resource location mapping constructed
during cross-examination on the involved resources. Note
that this is only feasible to do for resources that are present
on the reference system. As stated before, our primary
goal is removing malicious files and restoring system files
and settings to ensure the machine is in a stable state, and
does not include the recovery of corrupted user files (e.g.,
as a result of a Ransomware attack). Finally, we collect
all the generated steps in a single report (e.g., JSON),
which includes the resources and the appropriate actions to
apply to them. These steps can then easily be translated to
commands (e.g., a Powershell script) directly executable
on the user machine.

4. System Architecture

We now describe our implementation of our proto-
type, filling in all technical details for implementing our
methodology. We use CAPEv2 [29] as our sandbox as it
features many behavioral analysis modules built in and al-
lows for configuration of the VM. During Machine Repli-
cation, we copy the system architecture, system model,
serial number and MAC address, and ensure the same
specific installed version of the operating system is used in
our VM. We configure the VM with the same username,
user domain and hostname, to ensure file and Registry
paths in our sandbox resemble the user machine. We copy

locale settings (e.g., system language and timezones), as
some malware campaigns target specific demographics or
countries [6]. During Cross-Examination, we first deter-
mine the original time window in which the malware
executed. Then, we refer to specific system services that
are active by default, correlate their logs with the time
window, and cross reference the records with the sandbox
report.

4.1. Determining the Execution Time Window

To determine the time window in which the mal-
ware originally executed, we first turn to the Windows
Event Log. Windows records process creation events in
the Windows Event Log under Event ID 4688 (Process
Creation) and 592 (Scheduled Task) [17]. This logging is
enabled by default, and thus does not require installation
or configuration of additional software. For duration, we
move to Prefetch files. For every execution of a program,
Windows creates a prefetch file to store data for faster
loading of future instances [10]. These files also contain
metadata, including total run times of the last running
instance of the process. As they are generated by default,
they can serve as forensic evidence that a process was
active in the past. Prefetch files also include the process
name and a hash of the file path, which we use to correlate
them to the malware sample. Combining both the Event
Log and Prefetch files gives us the complete time window
the malware ran in.

4.2. Determining File System Changes

To get the files accessed by the malware, we need
a record of file system changes on both systems. In
the sandbox, we filter on the exact system APIs that
specifically pertain to persistent file system modifications,
including NtWriteFile and NtDeleteFile. For the
user machine, we do not have additional monitoring and
thus rely to file system forensic data indicating the same
type of modifications have happened.

By default, Windows uses NTFS to manage files stored
on the disk [24]. One feature of NTFS that is built-in
and enabled by default, is the USN Journal [7]. This is
a record that tracks file system modifications made to
a volume, including file creation, writes and deletions.
An example excerpt of a USN journal record is shown
in Table 1. Here, we see a file modification, deletion
and creation record. Although the USN Journal does not
contain the process name or ID that was responsible for
this modification, nor does it store the full path of the file,
it does include the timestamp which we correlate to the
malware’s execution time window (Section 4.1), to make
an initial over-approximation of all files accessed by the
malware. Records also contain a sequence number which,
together with Master File Table (MFT) reference number,
can be mapped to a unique file identifier on an NTFS
volume, and thus their full path. Depending on the update
reason in the record, we proceed in the following manner:
Created Files. As mentioned before, given the non-
determinism for file creation events in malware, we use
fuzzy hash-based file content similarity tests to corre-
late dropped files across machines. For fuzzy hashing,

TABLE 1: Example record from $UsnJrnl with one file
modification, one deletion and one creation event.

Name MFT Seq. Timestamp Reason

foo.jcp 103845 1 2025-01-21 23:33:40.78 DataOverwrite
bar.tmp 125581 12 2025-01-21 23:51:16.02 FileDelete
baz.exe 131432 5 2025-01-22 18:35:40.34 FileCreate

we chose Context Triggered Piecewise Hashes (CTPH)
originally introduced by Kornblum et al. [19] as it is
widely used by the community [26], [44]. To determine
a suitable similarity threshold, we ran a small number of
samples through our pipeline for which the created files
were known, and took note of the similarity scores. We
observed that the similarity scores were very distinctive:
File pairs either had a score of > 90% if they were related,
and < 1% when unrelated. Therefore, we use a minimum
similarity threshold of 90% for two files to be considered
equivalent.
Modified and Deleted Files. When malware modifies or
deletes existing files, it is either targeting files made by
the user themselves (e.g., to encrypt or corrupt) or files
serving a specific purpose on the system (e.g., to install
itself or compromise an existing service). As the recovery
of user files is out of scope for this research (as this
type of change can only be recovered by backups or self-
healing file systems [9]), we only focus on the latter case.
Evidently, content similarity tests provide limited insights
when files are fully replaced and are impossible when files
are deleted entirely. However, since system files are stored
at specific file paths – contrary to the randomized names of
dropped files – it is very likely that the malware modified
or deleted the same system files with the same path in
the sandbox as on the user’s machine (provided the user
machine is accurately replicated). Therefore, we directly
cross reference paths with the records in the journal and
add them to the recovery list if present on both systems.

4.3. Determining Registry Changes

Windows can keep track of Registry changes e.g.,
through event logs (Event ID 4657) [17] or in the form of
transaction logs [23], [41]. To the best of our knowledge,
none of these are enabled by default or are only recorded
when multiple changes are bundled in a single transaction
(which is unlikely for malware), and thus do not fit our
use-case. However, similar to system files, Registry keys
for specific purposes (e.g., adding persistence or turning
off a certain service) usually has a specific path (with a
few exceptions, see Section 6). We therefore consider the
key path a good identifier to look up on the user machine,
even without the verification from forensic evidence.

5. Preliminary Results

We now test our prototype to assess its capabilities
in automatically composing recovery procedures from a
machine post-infection.

5.1. Dataset and Setup

To verify that our prototype works, we assemble a
dataset of 894 randomly selected samples from VirusTo-

tal [43] flagged by at least three AV engines (as suggested
by related work [49]) in 2020. We then use AVClass [37]
to assign samples to family labels. The resulting set com-
prises samples from 128 distinct malware families (top 3:
wapomi, upatre and berbew). We excluded a dominant
ransomware family virlock, which took up half of the
originally selected samples, as ransomware is out of scope
for this research. Finally, the set also includes 55 samples
that were not assigned a specific malware family.

To establish a ground truth, we first prepare a test
machine with commonly used software (e.g., Google
Chrome, Microsoft Office, VLC media player), that fulfills
the role of a user machine. We then use the machine for
normal daily activity for one month to introduce additional
”wear and tear” artifacts [25], including browser history
and normal system usage logs. Then, we run a sample on
this machine for 5 minutes (as suggested by [20]), with
an instance of Sysmon [39] and Procmon [38] actively
running in the background. Note that we strictly run these
tools to obtain ground truth traces and do not base our
recovery procedures on these logs. We configure Sysmon
to exclude most of the legitimate processes to reduce
background noise, and let Procmon only log file-write
events from non-system processes. After obtaining these
logs, we generate the user-specific recovery procedures
as described in Section 3, and compare the generated
procedures with the ground truth traces to evaluate the
effectiveness of our recovery system.

Following the community practices [33], [36], during
the analysis, we make sure to deny potentially harmful
traffic (e.g., spam) originating from both machines, and
deploy our prototype on a separate sub-network where
no production machines are connected. Additionally, after
each analysis, we roll back the machines to a clean snap-
shot to revert side effects that malware might introduce.
This also prevents potential denial of service attempts. Our
setup was approved by our Ethics Committee.

5.2. Results

Among the 894 samples, we collected 741 (82.8%)
results. 153 (17.1%) samples did not successfully execute
(e.g., crashed or did not seem to be functional anymore).
Out of the 741 working samples, 46 (5.16%) samples
deleted their own Prefetch files, which renders our system
unsuccessful directly. We reflect on potential solutions
for this in Section 6. This leaves a total of 695 samples
(77.7%) which were successfully handled by our pro-
totype. Table 2 summarizes the detection and recovery
rates of these samples. We define the recovery procedures
as complete (fully recovered) if there are no malware-
made changes left on the system. If the sample did not
create or change files or Registry keys and our prototype
correctly identified this (i.e., it did not incorrectly include
additional files or Registry keys to wrongly “revert”), we
also consider it a successful recovery. Our recovery system
did not delete any legitimate resources and thus has zero
false positives.

File System. Among the 741 active samples, 483 samples
created new files on the system. Most of these samples
only generated one file with a median of five files. There
are 27 samples that created over 1000 files. For 155

TABLE 2: Observed recovery rates. Full Recovery indi-
cates samples for which all objects were reverted. No Re-
covery indicates samples for which nothing was recovered.

Full Recovery No Recovery

Created File 53.3% 25.8%
Written File 98.0% 2.0%
Deleted File 99.5% 0.5%

Created Registry Key 99.2% 0.8%
Written Registry Key 94.1% 1.3%
Deleted registry Key 99.5% 0.5%

Total 51.3% 0.5%

samples (32.1%) we were able to identify and match files
created in both the user machine and sandbox, of which
137 samples (28.3%) all the files were fully identified
and recovered. Finally, for 191 samples (39.5%) we did
not identify any file for recovery. We observe that file
creation is the most variant behavior, and as such, the
total recovery rate is mainly influenced by this.

For samples that created a large number of files (e.g.,
sfone family) we have a low identification rate. These
mainly consist of randomly downloaded files which can-
not be linked across separate instances of the malware.
Additionally, we observe a trend where malware uses
randomized names for new files and slightly modify their
contents. From the total 1443 created files, 635 (44.0%)
had a different name, and 626 (43.4%) had a similar
CTPH (> 90% similarity) but not an identical SHA256
hash. This demonstrates the importance of our approach,
as these files would not have been found otherwise.

We observed a large amount of file deletion activities
from most samples in the dataset. When examining fur-
ther, most of them can be attributed to malware trying
to cover its tracks by cleaning up temporarily dropped
files, emptying the recycle bin or deleting caches and
logs related to its execution. Four samples deleted system
files such as iexplore.exe and notepad.exe, and
replaced them with their own version. In our recovery
procedures, we did not identify them, as they were not
reported by the sandbox analysis, likely due to CAPE
sandbox limitations which we discuss in Section 6.

Finally, 15 samples modified existing system files,
including autorun.inf, system.ini, win.ini.
However, similar to the previously mentioned executable
files, none of these were shown in the sandbox due to
CAPE not picking up on these file changes.
Registry. Among the 741 samples, 166 explicitly tried
to write data into Registry keys, of which 122 (73.5%)
we were able to fully identify the changes, and for 10
samples we were not able to identify any written entries.

Most samples predominantly modified values under
the Run and RunOnce keys. This is an expected result,
as these are used to configure Windows to execute ad-
ditional programs during system startup or user logon,
and are thus are often used by malware to achieve per-
sistence [42]. Note that for recovery for these keys, we
only consider modification events (e.g., system calls such
as NtSetValueKey and NtDeleteKey) and exclude
creation events (i.e. NtCreateKey). We do this because
NtCreateKey can be used for both creating a new key
as well as opening an existing one. This is a reasonable
compromise, as both keys are present by default on Win-

dows 10, and have no lasting effect on the user’s machine
if this key is left empty.

We also observe that 15 samples created other Registry
keys, of which 9 we can fully identify and recover the
changes. These predominantly include modifying security
policies and services (e.g., Windows Firewall), as well
as adding binary payloads. If we inspect the remaining
unidentified 7 samples, we observe that they try to reg-
ister a system DLL under a unique identifier. As these
identifiers can be randomized, it is impossible to trace
back these keys on the user’s machine just from the key
path alone. We address this limitation in Section 6.

Finally, only four samples deleted keys. This is ex-
pected, as malware usually attempts to add extra (mali-
cious) behavior, rather than removing (benign) behavior,
and thus usually needs to only add or modify keys. Three
samples removed the AlternateShell key (used to
specify the first program to start when booting into Win-
dows Safe Mode). The other removed a browser DLL and
replaced it with its own DLL. None of them showed in
the sandbox report, thus we are not able to recover them.

5.3. Case Studies

We now demonstrate the importance of machine repli-
cation by disabling it for three known malware campaigns.
Operation ShadowHammer. ShadowHammer is a high-
profile supply chain attack from 2019 where the threat
actors predetermined a set of roughly 600 hardcoded
MAC addresses of the intended targets [14], [21]. When
running a ShadowHammer sample1 in our sandbox with
its MAC address left random, we observe that it collects
information but does not perform any action resulting in
a persistent change (Figure 2a). However, changing the
address to one of its intended targets (Figure 3b), we ob-
serve it also changes proxy settings (which would have to
be reverted) and downloads additional files (which would
have to be removed). This demonstrates that replicating
specific hardware identifiers indeed results in a more
complete picture of this malware’s behavior, and thus
allows us to generate a more complete recovery procedure.
Raccoon Stealer. Raccoon is an info stealer that first
appeared in 2019 that is known to fingerprint the host it
is running on to determine if it is executing in a Rus-
sian or non-Russian environment and change its behavior
accordingly [6]. In particular, we observe the malware2

downloading payloads from a C2 server when residing in a
UTC-5 American Eastern Time timezone and language set
to English (Figure 3b), resulting in more of the malware’s
code to execute and make more persistent changes to the
system than when executing the same sample within a
Russian environment (Figure 3a). This shows localization
settings are crucial in generating recovery procedures, or
else behavior observed in a VM may not be representative.
OopsIE. OopsIE is a trojan developed by the OliRig APT
group and targets Middle Eastern organization that only
operates on the computer with Middle Eastern time zones
(from UTC+2 to UTC+4) [28]. Similar to the case of Rac-
coon, we can replicate these localization settings in our

1. MD5 hash: 55a7aa5f0e52ba4d78c145811c830107
2. MD5 hash: 08a87b5af76a7d9f47d0bdd7453d77a4

(a) Sandbox activity with randomized MAC address.

(b) Sandbox activity with targeted MAC address.

Figure 2: Operation ShadowHammer sample behavior.

(a) Sandbox activity with Russian localization.

(b) Sandbox activity with US localization.

Figure 3: Raccoon sample behavior.

sandbox and run a sample3 for further analysis. However,
even with this context replicated, we are still not fully
capable of fully exposing the malware’s behavior, due
to additional detection evasion mechanisms that OopsIE
implements. In particular, it checks for specific DLLs of
the underlying virtualization software (e.g., VirtualBox
or VMWare), and also tests for the existence of CPU
temperature sensors and cooling fans [35]. While we can
address the DLLs on the system (e.g., by removing or
renaming them), unfortunately, CAPEv2 does not support
simulating these specific hardware features yet. This fur-
ther emphasizes the need for highly customizable VMs
when trying to run a sample in a sandbox.

3. MD5 hash: a2402e839a5f159954a4afc695f8b265

5.4. Takeaways

Our results show an important insight. Even without
any setup beforehand, with built-in features of Windows
alone that are enabled by default, our prototype identi-
fies and recovers a promising fraction of the persistent
changes. The majority of modified and deleted system
resources we can fully recover, and dropped files we
can often identify and remove. The case studies further
demonstrate that replication of user machine’s environ-
ment is crucial in our pipeline, and calls for sandbox
developers to make their VMs highly customizable.

6. Limitations

Our research does not come without limitations.
Limits of Forensic Evidence. To perform correct cross-
examination between the sandbox and the user machine,
our approach relies on USN Journals and Prefetch files
being present on the user machine at analysis time. USN
journal records have a limited time span, as they are
constantly replaced with new data. Assuming 4 hours of
system usage per day, the journal stores activity for up
to two weeks [7], [27]. Our approach is therefore best
applicable to relatively timely incident response scenarios.
Additionally, from our experiments, we observed that
6% of samples deleted their own Prefetch files, which
directly affect our prototype’s success rate. However, there
exist more forensic sources regarding program executions,
including ShimCaches and AmCaches [34]. Combining
these could make our prototype more resilient against
malware intentionally deleting its own traces.
Registry Key Mapping Limitations. Our observations
indicate that 44% of the created files and 7 Registry keys
used a random name. While we can map files using con-
tent similarity tests, for Registry keys this is not feasible.
Keys often have no contents or only contain small blobs of
data (typically an integer or small string), making content
similarity tests very prone to false positives. One improve-
ment could be to generalize known paths into patterns.
These patterns could also potentially be obtained semi-
automatically, e.g., by running the sample multiple times
and recognizing similarities in the observed paths [1].
Limited Metadata Coverage. Even though we carefully
extract environmental metadata for replicating the user
machine, it is possible that we missed components that
could have impeded in malware reactivating itself a second
time in our sandbox. A potential improvement to our
system could be to make a full disk image of the user
machine instead, to ensure the full file-system structure
in our sandbox is equal to the system the malware orig-
inally ran under. Note that this still would require the
extraction of auxiliary environmental metadata such as
specific hardware identifiers and MAC addresses, as this
is information that is not captured on a disk but is inherent
to the hardware that the user machine is running on.
Recovery of User Files. While our prototype has been
successful in remediating system resources and settings,
it struggles to recover user files which can be the target
of e.g., Ransomware attacks. While our primary intend
has not been the recovery of encrypted or corrupted user

TABLE 3: Related work. Specific indicates user-specific
generation directly applicable to the user machine. Setup
indicates additional tooling is required. Disk Space and
Runtime refer to incurred overheads.

Approach Specific Setup Disk Space Runtime

Hsu et al. [16] Yes Yes 0.3-13 MB/exec 107%
Goel et al. [15] Yes Yes 2 GB/day 7.4%

Torrellas et al. [40] Yes Yes 237.6 GB/day 4%
Paleari et al. [30] No No None 0%

Our approach Yes No None 0%

files, our system works port-mortem without making as-
sumptions on the additional software running on the user
machine. It could therefore also be used with no extra
overhead costs on top of additional systems such as [9]
and [4] that do offer recovery of user files post-attack.
Evasion. Despite our attempts to replicate the user’s ma-
chine in our sandbox, malware could evade our prototype.
For example, some samples rely on external factors such
as an active C2 server, which may be offline or not very
active. Additionally, even though CAPEv2 sandbox im-
plements counter-measures and we add some of our own
ourselves, malware may still detect our sandbox [3], [13].
An improvement would be to simulate more environment
sensitive APIs (e.g., as suggested in [45], [47]), or switch
to an agent-less sandbox (e.g., as suggested in [22]).
Finally, samples might not have exhibited their behavior
within our analysis timeout, although the majority of
samples run within our limit [20].

7. Related Work

Automatic malware recovery post-infection has been
explored in the past. In Table 3, we summarize previous
work, their reported statistics, and how it compares to our
approach.

Hsu et al. [16] proposed BACK TO THE FUTURE that
divides processes into trusted and untrusted, and actively
monitors all untrusted programs’ operations. However,
the user is responsible for identifying untrusted processes
and give permission to them every time they attempt to
make a persistent change, severely impeding normal use.
Goel et al. [15] proposed TASER, which automatically
identifies untrusted operations by searching in audit logs to
determine the resources that were accessed (tainted) by the
malware. However, next to the requirement of the presence
of an auditing process, when legitimate operations depend
on tainted operations, conflicts cannot be resolved which
affects reliability. Others have also proposed VM-based
solutions [5], [12], [18], [40], [46], where the execution of
an entire machine is either restored to a known clean state,
or replayed to infer which operations resulted in persis-
tent changes. While their logging mechanism themselves
impose low-performance overhead (typically not higher
than 7%), virtualization is not free and incurs high storage
overheads for its logs and snapshots, as well as overall
runtime slowdowns. Besides, restoring to a previous snap-
shot is not a targeted remediation and files and Registry
keys left untouched by the malware could be lost. Similar
ideas have also been presented in [11], [48], None of these
solutions, however, are really usable for a home user, as
they also either heavily incur either runtime or storage

overhead, and rely on additional software being installed
on the user’s machine. Our approach operates fully post-
mortem and does not require any setup or specialized
software running on the user’s machine, removing any
storage and runtime overhead during normal operation.

Paleari et al. [30] also worked on a framework to
generate remediation steps of persistent changes applied
by malware. Similar to our approach, the recovery pro-
cedures are generated entirely after the infection by run-
ning malware samples in a sandbox and thus incur no
overhead on the user machine. However, they heavily
rely on running the sample multiple times to generalize
the potentially non-deterministic malicious behavior. In
particular, they construct regular expressions for paths of
files across individual runs based on common path prefixes
and suffixes, in an attempt to map created files in the
sandbox to files on the user machine. As the behavior
of a sample is often highly sensitive to the environment
it runs in [1], and file paths can be completely ran-
domized (which we empirically showed in Section 5.2),
such a file path generalization is not always reliable. This
severely limits the specificity and thus direct applicability
of the generated remediation steps. Instead, our approach
actively replicates the user’s environment to mimic the
same conditions the malware ran under, and leverages file
system forensics and fuzzy hashes to map created files by
content and is fully independent of file paths, avoiding the
need for such generalizations.

8. Conclusion

We presented a prototype to automatically generate
user-specific malware recovery procedures that fully op-
erates post-mortem. By replicating the original conditions
the malware ran under in a VM, we can run samples in a
sandbox a second time and cross-reference the observed
behavior with forensic data present on the real machine.
We empirically tested our prototype, and showed that,
even without any additional monitoring software installed
on the user machine, we can revert 51.3% of all the
persistent changes the malware made. Finally, our study
showed insights on the importance of machine replication
and sandbox configurability in future malware research.

Acknowledgment

We would like to thank our reviewers for their valuable
inputs. We also thank VirusTotal for granting us access
to their academic malware sample dataset. This work has
been supported by the SeReNity project, Grant No. cs.010,
funded by The Netherlands Organisation for Scientific
Research (NWO).

References

[1] Avllazagaj, E., Zhu, Z., Bilge, L., Balzarotti, D., Dumitras, T.:
When Malware Changed Its Mind - An Empirical Study of Variable
Program Behaviors in the Real World. In: Proceedings of the
USENIX Security Symposium (2021)

[2] AVTest: Malware Statistics & Trends Report. https://www.av-test.
org/en/statistics/malware/ (2025)

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

[3] Biondi, F., Given-Wilson, T., Legay, A., Puodzius, C., Quilbeuf,
J.: Tutorial: An Overview of Malware Detection and Evasion
Techniques. In: Proceedings of the International Symposium on
Leveraging Applications of Formal Methods (ISoLA) (2018)

[4] Chen, N., Dafoe, J., Chen, B.: Poster: Data recovery from ran-
somware attacks via file system forensics and flash translation layer
data extraction. In: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (2022)

[5] Choi, S.H., Park, K.W.: iContainer: Consecutive checkpointing
with rapid resilience for immortal container-based services. In:
Journal of Network and Computer Applications (2022)

[6] Cohen, B.: Raccoon: The Story of a Typical Infostealer (2020),
https://www.cyberark.com/resources/threat-research-blog/raccoo
n-the-story-of-a-typical-infostealer

[7] Cohen, M.: The Windows USN Journal (2020), https://docs.veloc
iraptor.app/blog/2020/2020-11-13-the-windows-usn-journal-f0c55
c9010e/

[8] Comparetti, P.M., Salvaneschi, G., Kirda, E., Kolbitsch, C.,
Kruegel, C., Zanero, S.: Identifying Dormant Functionality in
Malware Programs. In: Proceedings of the IEEE Symposium on
Security and Privacy (S&P) (2010)

[9] Continella, A., Guagnelli, A., Zingaro, G., De Pasquale, G.,
Barenghi, A., Zanero, S., Maggi, F.: Shieldfs: a self-healing,
ransomware-aware filesystem. In: Proceedings of the 32nd annual
conference on computer security applications. pp. 336–347 (2016)

[10] Duby, A., Taylor, T., Bloom, G., Zhuang, Y.: Detecting and clas-
sifying self-deleting windows malware using prefetch files. In:
Proceedings of the IEEE Annual Computing and Communication
Workshop and Conference (CCWC) (2022)

[11] Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.:
Revirt: Enabling intrusion analysis through virtual-machine log-
ging and replay. In: Proceedings of the ACM SIGOPS Operating
Systems Review (2002)

[12] Elbadawi, K., Al-Shaer, E.: TimeVM: a framework for online intru-
sion mitigation and fast recovery using multi-time-lag traffic replay.
In: Proceedings of the International Symposium on Information,
Computer, and Communications Security (ASIACCS) (2009)

[13] Galloro, N., Polino, M., Carminati, M., Continella, A., Zanero, S.:
A Systematical and Longitudinal Study of Evasive Behaviors in
Windows Malware. Computers & Security (2022)

[14] Gatlan, S.: MAC Addresses Targeted by the ASUS Supply Chain
Attack Now Available (2019), https://www.bleepingcomputer.com
/news/security/mac-addresses-targeted-by-the-asus-supply-chain
-attack-now-available/

[15] Goel, A., Po, K., Farhadi, K., Li, Z., Lara, E.d.: The taser intrusion
recovery system. In: Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP) (2005)

[16] Hsu, F., Chen, H., Ristenpart, T., Li, J., Su, Z.: Back to the Future:
A Framework for Automatic Malware Removal and System Repair.
In: Proceedings of the Annual Computer Security Applications
Conference (ACSAC) (2006)

[17] IT, U.: Windows security log encyclopedia (2023), https://www.ul
timatewindowssecurity.com/securitylog/encyclopedia/default.aspx

[18] Ko, R., Xiao, C., Onizuka, M., Huang, Y., Lin, Z.: Ultraverse: Effi-
cient Retroactive Operation for Attack Recovery in Database Sys-
tems and Web Frameworks. In: arXiv preprint arXiv:2211.05327
(2022)

[19] Kornblum, J.: Identifying almost identical files using context trig-
gered piecewise hashing. In: In Proceedings of the Digital Inves-
tigation (2006)

[20] Küchler, A., Mantovani, A., Han, Y., Bilge, L., Balzarotti, D.:
Does Every Second Count? Time-based Evolution of Malware
Behavior in Sandboxes. In: Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS) (2021)

[21] Lab, K.: Operation ShadowHammer: new supply chain attack
threatens hundreds of thousands of users worldwide (2019), https:
//www.kaspersky.com/about/press-releases/2019 operation-shado
whammer-new-supply-chain-attack

[22] Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S.,
Kiayias, A.: Scalability, Fidelity and Stealth in the DRAKVUF
Dynamic Malware Analysis System. In: Proceedings of the Annual
Computer Security Applications Conference (ACSAC) (2014)

[23] Microsoft: Working with transactions (2022), https://learn.micros
oft.com/en-us/windows/win32/ktm/programming-model

[24] Microsoft: NTFS overview (2023), https://learn.microsoft.com/en
-us/windows-server/storage/file-server/ntfs-overview

[25] Miramirkhani, N., Appini, M.P., Nikiforakis, N., Polychronakis,
M.: Spotless sandboxes: Evading malware analysis systems using
wear-and-tear artifacts. In: Proceedings of the IEEE Symposium
on Security and Privacy (S&P) (2017)

[26] Naik, N., Jenkins, P., Savage, N., Yang, L., Boongoen, T., Iam-On,
N., Naik, K., Song, J.: Embedded yara rules: strengthening yara
rules utilising fuzzy hashing and fuzzy rules for malware analysis.
In: Proceedings of the Complex & Intelligent Systems (2021)

[27] Oh, J.: (2013), http://forensicinsight.org/wp-content/uploads/2013/
07/F-INSIGHT-Advanced-UsnJrnl-Forensics-English.pdf

[28] O’Neill, P.H.: A well-known hacking group is getting better at
evading detection (2018), https://cyberscoop.com/oopsie-oilrig-ira
n-evading-detection/

[29] O’Reilly, K., Brukhovetskyy, A.: CAPE: Malware Configuration
And Payload Extraction (2024), https://github.com/kevoreilly/CA
PEv2

[30] Paleari, Roberto and Martignoni, Lorenzo and Passerini, Emanuele
and Davidson, Drew and Fredrikson, Matt and Giffin, Jon and
Jha, Somesh: Automatic Generation of Remediation Procedures
for Malware Infections. In: Proceedings of the USENIX Security
Symposium (2010)

[31] Passerini, E., Paleari, R., Martignoni, L.: How Good Are Malware
Detectors at Remediating Infected Systems? In: Proceedings of the
Conference on Detection of Intrusions and Malware and Vulnera-
bility Assessment (DIMVA) (2009)

[32] Quarta, D., Salvioni, F., Continella, A., Zanero, S.: Toward Sys-
tematically Exploring Antivirus Engines. In: Proceedings of the
Conference on Detection of Intrusions and Malware and Vulnera-
bility Assessment (DIMVA) (2018)

[33] Reidsma, D., van der Ham, J., Continella, A.: Operationalizing Cy-
bersecurity Research Ethics Review: From Principles and Guide-
lines to Practice. In: Proceedings of the International Workshop on
Ethics in Computer Security (EthiCS) (2023)

[34] Response, M.I.: New Microsoft Incident Response guide helps
simplify cyberthreat investigations (2024), https://www.microsoft.
com/en-us/security/blog/2024/04/23/new-microsoft-incident-respo
nse-guide-helps-simplify-cyberthreat-investigations/

[35] Robert Falcone, Bryan Lee, R.P.: OilRig targets a Middle Eastern
Government and Adds Evasion Techniques to OopsIE (2018), http
s://unit42.paloaltonetworks.com/unit42-oilrig-targets-middle-easte
rn-government-adds-evasion-techniques-oopsie/

[36] Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V.,
Pohlmann, N., Bos, H., Van Steen, M.: Prudent practices for
designing malware experiments: Status quo and outlook. In: Pro-
ceedings of the IEEE Symposium on Security and Privacy (S&P)
(2012)

[37] Sebastián, M., Rivera, R., Kotzias, P., Caballero, J.: AVclass:
A Tool for Massive Malware Labeling. In: Proceedings of the
International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID). Cham (2016)

[38] SysInternals, M.: Process Monitor (2024), https://learn.microsoft.
com/en-us/sysinternals/downloads/procmon

[39] SysInternals, M.: System Monitor (2024), https://learn.microsoft.
com/en-us/sysinternals/downloads/procmon

[40] Torrellas, J., Oliveira, D.A.S.d., Crandall, J.R., Wassermann, G.,
Wu, S.F., Su, Z., Chong, F.T.: ExecRecorder: VM-based full-system
replay for attack analysis and system recovery. In: Proceedings
of the 1st workshop on Architectural and System Support for
Improving Software Dependability (ASID) (2006)

[41] Via, D.: Digging up the past: Windows registry forensics revisited
(2019), https://www.mandiant.com/resources/blog/digging-up-the
-past-windows-registry-forensics-revisited

https://www.cyberark.com/resources/threat-research-blog/raccoon-the-story-of-a-typical-infostealer
https://www.cyberark.com/resources/threat-research-blog/raccoon-the-story-of-a-typical-infostealer
https://docs.velociraptor.app/blog/2020/2020-11-13-the-windows-usn-journal-f0c55c9010e/
https://docs.velociraptor.app/blog/2020/2020-11-13-the-windows-usn-journal-f0c55c9010e/
https://docs.velociraptor.app/blog/2020/2020-11-13-the-windows-usn-journal-f0c55c9010e/
https://www.bleepingcomputer.com/news/security/mac-addresses-targeted-by-the-asus-supply-chain-attack-now-available/
https://www.bleepingcomputer.com/news/security/mac-addresses-targeted-by-the-asus-supply-chain-attack-now-available/
https://www.bleepingcomputer.com/news/security/mac-addresses-targeted-by-the-asus-supply-chain-attack-now-available/
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx
https://www.kaspersky.com/about/press-releases/2019_operation-shadowhammer-new-supply-chain-attack
https://www.kaspersky.com/about/press-releases/2019_operation-shadowhammer-new-supply-chain-attack
https://www.kaspersky.com/about/press-releases/2019_operation-shadowhammer-new-supply-chain-attack
https://learn.microsoft.com/en-us/windows/win32/ktm/programming-model
https://learn.microsoft.com/en-us/windows/win32/ktm/programming-model
https://learn.microsoft.com/en-us/windows-server/storage/file-server/ntfs-overview
https://learn.microsoft.com/en-us/windows-server/storage/file-server/ntfs-overview
http://forensicinsight.org/wp-content/uploads/2013/07/F-INSIGHT-Advanced-UsnJrnl-Forensics-English.pdf
http://forensicinsight.org/wp-content/uploads/2013/07/F-INSIGHT-Advanced-UsnJrnl-Forensics-English.pdf
https://cyberscoop.com/oopsie-oilrig-iran-evading-detection/
https://cyberscoop.com/oopsie-oilrig-iran-evading-detection/
https://github.com/kevoreilly/CAPEv2
https://github.com/kevoreilly/CAPEv2
https://www.microsoft.com/en-us/security/blog/2024/04/23/new-microsoft-incident-response-guide-helps-simplify-cyberthreat-investigations/
https://www.microsoft.com/en-us/security/blog/2024/04/23/new-microsoft-incident-response-guide-helps-simplify-cyberthreat-investigations/
https://www.microsoft.com/en-us/security/blog/2024/04/23/new-microsoft-incident-response-guide-helps-simplify-cyberthreat-investigations/
https://unit42.paloaltonetworks.com/unit42-oilrig-targets-middle-eastern-government-adds-evasion-techniques-oopsie/
https://unit42.paloaltonetworks.com/unit42-oilrig-targets-middle-eastern-government-adds-evasion-techniques-oopsie/
https://unit42.paloaltonetworks.com/unit42-oilrig-targets-middle-eastern-government-adds-evasion-techniques-oopsie/
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://www.mandiant.com/resources/blog/digging-up-the-past-windows-registry-forensics-revisited
https://www.mandiant.com/resources/blog/digging-up-the-past-windows-registry-forensics-revisited

[42] Villalón-Huerta, A., Marco-Gisbert, H., Ripoll-Ripoll, I.: A Tax-
onomy for Threat Actors’ Persistence Techniques. Computers &
Security 121 (2022)

[43] VirusTotal: VirusTotal Malware Academic Dataset. https://www.vi
rustotal.com/ (2020)

[44] VirusTotal: VirusTotal: ssdeep, CTPH hash of the file content
(2020), https://developers.virustotal.com/reference/ssdeep

[45] VMray: Nowhere to Hide: Analyzing Environment-Sensitive Mal-
ware with Rewind (2016), https://www.vmray.com/cyber-securit
y-blog/analyzing-environment-sensitive-malware/

[46] Webster, A., Eckenrod, R., Purtilo, J.: Fast and Service-preserving
Recovery from Malware Infections Using CRIU. In: Proceedings
of the USENIX Security Symposium (2018)

[47] Xu, Z., Zhang, J., Gu, G., Lin, Z.: Goldeneye: Efficiently and effec-
tively unveiling malware’s targeted environment. In: Proceedings
of the Research in Attacks, Intrusions and Defenses (RAID) (2012)

[48] Zhu, N., Chiueh, T.c.: Design, implementation, and evaluation
of repairable file service. In: Proceedings of the International
Conference on Dependable Systems and Network (DSN) (2003)

[49] Zhu, S., Shi, J., Yang, L., Qin, B., Zhang, Z., Song, L., Wang,
G.: Measuring and Modeling the Label Dynamics of Online Anti-
Malware Engines. In: Proceedings of the USENIX Security Sym-
posium (2020)

https://www.virustotal.com/
https://www.virustotal.com/
https://developers.virustotal.com/reference/ssdeep
https://www.vmray.com/cyber-security-blog/analyzing-environment-sensitive-malware/
https://www.vmray.com/cyber-security-blog/analyzing-environment-sensitive-malware/

	Introduction
	Background
	Methodology
	System Architecture
	Determining the Execution Time Window
	Determining File System Changes
	Determining Registry Changes

	Preliminary Results
	Dataset and Setup
	Results
	Case Studies
	Takeaways

	Limitations
	Related Work
	Conclusion
	References

