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Abstract Malware authors constantly develop new techniques in order
to evade analysis systems. Previous works addressed attempts to evade
analysis by means of anti-sandboxing and anti-virtualization techniques,
for example proposing to run samples on bare-metal. However, state-of-
the-art bare-metal tools fail to provide richness and completeness in the
results of the analysis. In this context, Dynamic Binary Instrumentation
(DBI) tools have become popular in the analysis of new malware samples
because of the deep control they guarantee over the instrumented binary.
As a consequence, malware authors developed new techniques, called anti-
instrumentation, aimed at detecting if a sample is being instrumented. We
propose a practical approach to make DBI frameworks more stealthy and
resilient against anti-instrumentation attacks. We studied the common
techniques used by malware to detect the presence of a DBI tool, and we
proposed a set of countermeasures to address them. We implemented our
approach in Arancino, on top of the Intel Pin framework. Armed with it,
we perform the first large-scale measurement of the anti-instrumentation
techniques employed by modern malware. Finally, we leveraged our tool
to implement a generic unpacker, showing some case studies of the anti-
instrumentation techniques used by known packers.

1 Introduction

Malware is still one of the Internet’s major security threat and dynamic analysis
systems are an essential component to a defend from it. By running malicious sam-
ples in a controlled environment, security analysts can observe their behavior [30],
unpack obfuscated code [25], identify command and control (C&C) servers, gen-
erate behavioral signatures, as well as remediation procedures for infections [12].
However, modern malware samples present many techniques, called anti-debugging
and anti-sandboxing, to hide their behavior when they detect that they are running
in a controlled environment. Generally, such malware is known as “evasive”.

Previous research proposed different mechanisms to defeat evasive malware,
mainly based on two approaches. A first approach draws upon techniques (com-
monly known as “multi-path execution”) used to increase the coverage of dynamic
analysis tools [10, 28, 42]. Binaries are executed multiple times, either providing



different inputs that invert the outcomes of conditional branches (i.e., trying to
disarm detection triggers) [10, 28], or simply forcing the execution along a different
path [42]. The second approach tries to analyze malware samples in environments
that minimize the artifacts that can be exploited to detect the analysis system,
for instance running samples on bare-metal [20], or porting the instrumenting
framework in hardware [37]. While the former approach is more generic, it is often
unfeasible since it leads to an explosion in the need of computational resources.
Instead, the latter is more practical and, in fact, it has been recently adopted by
security researchers [20, 21, 37].

To evaluate a malware analysis system, one should consider three factors: qual-
ity, efficiency, and stealthiness [20]. Quality refers to the richness and completeness
of the analysis results. Efficiency measures the number of samples that can be
analyzed per unit time. Stealthiness refers to the undetectability of the presence of
the analysis environment. Intuitively, there is a constant trade-off between these
factors. Despite the effort of the research community in developing approaches
and tools to enforce the stealthiness of malware analysis systems, state-of-the-art
tools provide either stealthiness or quality. For instance, Kirat et al. [20] proposed
a framework for performing analyses on bare-metal. However, such systems cannot
guarantee a good quality, i.e., they do not provide the analysts a good level of de-
tails in the inspection of the malware behavior. Instead, in some specific scenarios
(e.g., manual and automated reverse engineering) we need deeper control of the
running binary. In fact, the use of Dynamic Binary Instrumentation (DBI) frame-
works has become a valid alternative for analyzing malware samples [4, 16, 27, 26].
By injecting instrumentation code inside the binary under analysis, DBI tools
give a deep control over the analyzed program, providing both a low-level (i.e.,
instruction) and a high-level (i.e., system call) view. Given that, in order to keep
on hindering the reverse engineering of their code, malware authors developed
a new series of techniques, called anti-instrumentation, aimed at detecting the
presence of a DBI tool at runtime.

We propose a dynamic protection framework to defend a generic DBI Tool
against anti-instrumentation attacks. First, we classified state-of-the-art tech-
niques in four categories (code cache artifacts, environment artifacts, just in time
compiler detection, and overhead detection); then, we designed a set of generic
countermeasures to defeat every identified class. In order to achieve this, we lever-
age the power of DBI tools to fully control the execution flow of the instrumented
process. This allow us to detect and dismantle possible evasion attempts. We
implemented our approach in Arancino, on top of the Intel Pin framework [23].

We tested our system against eXait [15], a tool containing a set of plugins
that aim at detecting when a program is instrumented by Intel Pin, showing
that Arancino is able to hide Intel Pin, allowing the analysis of evasive binaries.
Then, we used our tool to perform a large-scale study of the anti-instrumentation
techniques used by malware: we collected and analyzed 7,006 malware samples,
monitoring the evasive behaviors that triggered our system. Finally, to show a
useful application scenario of our system, we leveraged Arancino to implement
a generic, dynamic, unpacker that can handle anti-instrumentation-equipped



packers. Moreover, we show case studies of known packers that employ anti-
instrumentation techniques in the unpacking process.

In summary, we make the following contributions:

– We proposed an approach to practically defeat the techniques that malware
employs to detect instrumentation systems (i.e., DBI tools).

– We performed a study of the common techniques adopted by modern malware
authors to perform evasion of instrumentation systems. We measured how
malware detects DBI tools on a dataset of 7,006 samples.

– We leveraged our anti-evasion approach to implement a generic, dynamic,
evasion-resilient unpacker, showing some case studies of the evasion techniques
used by know packers.

In the spirit of open science, we make our datasets and the code developed for
Arancino publicly available 1.

2 Background and Motivation

Dynamic Binary Instrumentation (DBI) is a method to analyze the behavior of
a binary application at run-time by injecting instrumentation code, which exe-
cutes transparently as part of the normal instruction stream after being injected.
Commonly, DBI tools exploit a Just In Time (JIT) compiler to instrument the
analyzed binary at run-time, translating originally x86 code into an intermediated
representation. Translation units used by different frameworks differ in size. For
instance, Valgrind [29] uses standard basic blocks as traces, caches the transla-
tion, and jumps inside the corresponding cache each time a basic block is hit.
DynamoRIO [9], instead, uses an extended definition of basic block as trace, in-
cluding all instructions until a conditional jump. This includes also code inside
function calls or after an unconditional jump. Intel Pin, uses traces defined as all
the code between the previous trace and the next unconditional jump.

DBI tools turned out to be particularly useful in malware analysis, for instance
to detect malicious software [4], identify cryptographic primitives [16], or to
efficiently perform taint analysis [26]. However, DBI tools are not completely
transparent to the analyzed malware, and, in fact, anti-instrumentation techniques
have been developed to detect the instrumentation process. We classified such
anti-instrumentation techniques in four categories.
Code Cache Artifacts. These techniques aim at detecting artifacts that are
inherent of a DBI cache. For example, the Extended Instruction Pointer (EIP) is
different if a binary is instrumented. In fact, in a DBI Tool the code is executed
from a different memory region, called code cache, rather than from the main
module of the binary.
Environment Artifacts. The memory layout of an instrumented binary is
deeply different respect to the one of a not instrumented one. Searching for DBI
artifacts such as strings or particular code patterns in memory can eventually
1 https://github.com/necst/arancino
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reveal the presence of a DBI tool inside the target process memory. Also, the
parent process of an instrumented binary is often the DBI tool itself.
JIT Compiler Detection. JIT compilers make a lot of noise inside the process
in terms of Windows API calls and pages allocation. These artifacts can be
leveraged by the instrumented program to detect the presence of a DBI tool.
Overhead Detection. Instrumentation adds an observable overhead in the
execution of a target program. This overhead can be noticed by malware by
estimating the execution time of a particular set of instructions.

3 Arancino: Approach

A DBI tool can work at three granularities: (1) Instruction, a single instruction
inside a collected trace; (2) Basic block, a sequence of instructions terminated
by a conditional jump; (3) Trace, a sequence of basic blocks terminated by an
unconditional jump. Our approach leverages the complete control that a DBI
tool has on the instrumented binary to hide the artifacts that the DBI tool itself
introduces during the instrumentation process. In fact, by instrumenting a binary,
we can identify when it tries to leverage such artifacts to evade the analysis.
In practice, we designed a set of countermeasures for the anti-instrumentation
techniques we mentioned in Section 2. We implemented our approach in Arancino
using Intel Pin. While we developed our countermeasures specifically targeting
Intel Pin, the approach on which such countermeasures are based is generic and
can be adapted to any DBI tool.

3.1 Code Cache Artifacts

DBI tools do not execute the original code of a program. Instead, they execute a
particular memory region called code cache in which they copied an instrumented
version of the original code.
EIP Detection. A malware sample can detect if the Instruction Pointer (EIP)
is different from the expected one. This technique exploits particular instructions
that save the execution context, including the current value of the EIP register.
Once obtained the effective value inside EIP register, this value is compared with
the base address in which the program expects the Instruction Pointer to be
(main module of the program). If these two values are different, the program
under analysis become aware that it has been instrumented. Here we report
the currently working methods we identified to retrieve EIP. Examples of such
instructions are int 2e, fsave, and fxsave. An easier technique to retrieve
the EIP is monitoring the stack after a call instruction. However, this scenario
is already inherently handled by Intel Pin, which does not alter the original EIP
value on the stack. In order to defeat this technique, since there are a set of
instructions that expose the presence of the DBI by leaking the effective EIP, we
track these instructions in the collected trace and block the information leakage.
Specifically, when we detect such instructions we execute a user defined function



that patches the value inside registers or memory with the expected one, so that
the analyzed program can be fooled.

int 2e is the legacy instruction used in Windows in order to perform a system
call (now replaced by sysenter). The interrupt handler called as consequence of
the int 2e saves the current state information parameters, such as the EIP and
the EFLAGS, in order to eventually return correctly from kernel-mode to user-mode
after the execution of the syscall. Practically, this behavior has the side effect to
store the EIP in the EDX register. When we detect the presence of int 2e, we
insert a call to a function right after its execution that patches the value stored
in EDX with the real EIP of the current instruction inside the main module.

fsave/ fxsave/ fstenv instructions save the floating-point context, includ-
ing the effective EIP, at the moment of the execution of the last floating-point
operation. When we detect one of these instructions in a trace, we insert a call to
a function that manipulates the floating-point context by modifying the value of
EIP with the correct address inside the main module of the program.
Self-Modifying Code. Another way to detect the presence of a code cache is
using self-modifying code, i.e., code that changes the instructions at run-time by
overwriting itself. Because a DBI tool executes the cache where the code is not
modified, it will execute a wrong trace breaking the semantic of the program. This
violates the property of semantic equivalence between the original program and
the instrumented one. To handle this technique, we force the DBI tool to build a
new trace with the correctly patched code and abort the execution of the wrong
one. When a new trace is collected, we first retrieve its boundaries, then for each
write instruction we check if the written address is inside the boundaries of the
current trace. If this happens, the address is marked as written. At the same time,
for each instruction we check if the EIP that has to be executed is marked as
written and, if so, we force the DBI tool to discard the trace and build a new one.

3.2 Environment Artifacts

DBI tools introduce further environment artifacts during instrumentation.
Parent Detection. Since the instrumented program is launched by the DBI
tool as its child, it can obtain its parent process and check if it is not the ex-
pected one. In order to hide the parent process name, we took into account the
possibility to get the parent process not only by using the standard Windows
APIs, but also using more advanced methods. Analyzing the various techniques
aimed to retrieve the process list we have identified two countermeasures that
can correctly defeat this type of attacks. The first one consists in hooking the
NtQuerySystemInformation and faking the returned SYSTEM PROCESS INFO
structure by replacing every process named pin.exe with cmd.exe. Second, we
deny the instrumented program to open the process CSRSS.exe. In fact, this
process is responsible to maintain its own process list in user-space. To do so, we
create a list of PID of processes that we want to hide from the target program,
then we hook the NtOpenProcess to check if the target PID is included in the
list. If so, we trigger an NTSTATUS_ACCESS_DENIED.



Memory Fingerprinting. Malware can identify the presence of several artifacts
that a DBI tool unavoidably leaves in memory. The most straightforward technique
is to scan the entire memory of the process looking for allocated pages and
searching inside these pages for a set of DBI-related artifacts (like strings and code
patterns). This kind of attack is thwarted by hiding all the memory regions where
the DBI-related code and data reside. This is done by intercepting and controlling
the results of the functions ( VirtualQuery, NtQueryVirtualMemory) used to
determine the state of a particular memory page. We check if the queried memory
is inside a whitelist of addresses that the instrumented process is authorized to
access. In the case the address is in the whitelist, we return the correct value,
otherwise we return a MEM_FREE value. In other words, the memory space inside
the whitelist is the only part that the analyzed program can see as allocated.

The whitelist is created at the beginning of the instrumentation process and
updated at run-time when we detect a new dynamic memory allocation made by
the analyzed program. Initially, the whitelist contains the main module of the
executable. Then, when we detect that a new library is being loaded, we update
the whitelist including such memory region. The heap and stack memory space
is also whitelisted. We use getProcessHeaps at start-up in order to add to the
whitelist the heap memory addresses created during the initialization process.
We hook heap allocation functions to keep track of the dynamically allocated
contents. By hooking the NtAllocateVirtualMemory, RtlAllocateHeap, and
RtlReAllocateHeap functions we can actually cover all allocation functions
since all the higher level APIs end up using one of them. Instead, to identify the
stack we recover the address from ESP register and, using the default stack size
(1048576 bytes), we whitelist its memory address space. Moreover, we need to add
to our whitelist the PEB and TEB data structures, which contain information
about the current process and threads. While analyzing these structures we also
whitelist different memory regions pointed by fields in these structures. Last, we
whitelist mapped files. Mapped files are particular memory structures in which the
content of a file is associated with a portion of the process memory space. Some
memory mapped files are created during the loading process of the executable,
e.g., locale.nls, while others are created at run-time using the MapViewOfFile
function, which at a lower level invokes the NtMapViewOfSection system call.
Therefore, we scan the memory of the process as soon as it is loaded whitelisting
all the memory regions marked as MEM_MAPPED. This allows us to consider the
memory mapped files which are created before we get actual control of the
execution. Moreover. we hook the NtMapViewOfSection system call to track the
mapped files which are created by the application itself at run-time.

Note that a sample could detect our system by trying to allocate memory
that is already allocated but hidden by our system. To this end, malware should
allocate and deallocate through the entire address space to identify such memory
regions. However, this is inefficient for the malware, and Arancino could easily
detect such weird behavior.



3.3 JIT Compiler Detection

As briefly explained in Section 2, DBI tools use JIT compilers to instrument a
binary. Malware can leverage JIT artifacts to spot the presence of a DBI tool.

DLL Hook. DBI tools need to hook functions in order to intercept the execution
at the end of a not instrumented trace. Specifically, they insert jumps (Hooks)
at the beginning of some functions. Consequently, an instrumented program can
check if the initial instructions of common functions have been modified. In order
to hide these differences, at the beginning of the instrumentation we retrieve the
addresses in memory of the hooked functions (for example using the Windows API
GetModuleHandle). Using this method, we can correctly retrieve addresses even
if Address Space Layout Randomization (ASLR) is active on the machine. Once
we know these addresses, we label them as protected, and we store the original
values in a different memory region. When the binary wants to read a protected
memory region, we simply redirect the read to our fake pages. In this way, the
instrumented binary obtains the original value.

Memory Page Permissions. A JIT compiler needs to write and then execute
a significant amount of code, hence the number of pages marked as RWX inside
the address space is substantially larger respect to the not-instrumented execution
of the program. A binary can scan the entire process address space counting the
number of page encountered with RWX permissions. If this number is considerably
high, it can spot the presence of the DBI. To address this technique, we leverage a
whitelist of memory pages as we described in Section 3.2. When the instrumented
binary performs a query of a memory region, we check if the address of such
region is included in the whitelist of authorized addresses. If not, we return a
MEM_FREE value, hiding the pages used by the JIT compiler.

Memory Allocations. As we mention before, the JIT compiler intensely
uses RWX memory pages to instrument and cache instrumented traces.
To this end, the DBI tool allocate the memory to fulfill the need. All
these allocations are executed going through the low-level Windows API
ZwAllocateVirtualMemory. A detection mechanism is to count the number of in-
vocations of the ZwAllocateVirtualMemory and compare it with the number of
invocations performed during a non-instrumented execution; if the difference is con-
siderably high, the program can spot the presence of the JIT compiler. Usually, a
program that wants to implement this anti-instrumentation technique inserts a sim-
ple assembly routine at the beginning of the ZwAllocateVirtualMemory which
increments a counter every time the function is invoked; if the counter exceeds a
predefined threshold then the JIT compiler is detected. The approach we used to
defeat this technique aims at (1) redirecting every write attempt of the process
inside the .text segment of libraries, and (2) faking the results of suspicious read
instructions that have their target addresses inside the .text segment of libraries.
This (1) prevents the insertion of hooks (e.g., in ZwAllocateVirtualMemory),
and (2) denies the possibility to check if an hook is in place or not. Note that this
approach is generic and can defeat every attempt to overwrite the original code
of functions and to insert hooks inside protected memory regions.



3.4 Overhead Detection.

Despite DBI tools’ effort to reach good instrumentation performance, they
introduce an observable overhead, which can be detected by performing
small benchmarks tests. To do so, malware leverages Windows APIs such as
NtQueryPerformanceCounter, GetTickCount, timeGetTime to obtain execu-
tion times and reveal the presence of instrumentation tools. Our countermeasure
tries to fool the process to think that the elapsed time is less despite the intro-
duced overhead. We can achieve this by lowering the results returned from the
previously described functions.

Windows Time. Windows APIs, such as GetTickCount and timeGetTime,
retrieve the time information by accessing different fields in a shared user page
mapped at the end of the process memory space. In this memory area, we can find
the structure KUSER_SHARED_DATA. Our approach is to implement a “FakeMemory”
in the locations that these functions access, lying about its content to cause the
functions to return controlled time values. Hooking the API is not enough, because
it is possible to read such data structure directly from the memory without calling
any API. The strategy adopted in order to return fake values varies for the
GetTickCount and the timeGetTime, because in order to calculate the elapsed
time they employ two different methods.

GetTickCount accesses the fields TickCountMultiplier and
TickCountQuad and performs a computation that returns the number of
milliseconds elapsed since the start of the system. Our approach is to intercept
the read of the TickCountMultiplier, retrieve the real value, divide it
by a user defined TICK DIVISOR and finally return this value to the read
instruction. This approach relies on a user defined divisor that must be tuned
in order to successfully defeat this technique. timeGetTime accesses the field
interrupt_time that is represented by a struct called _KSYSTEM_TIME. The
time is retrieved by concatenating two fields of this struct: the High1Time and
the LowPart as High1Time:LowPart. We reassemble the value, divide it by the
user defined divisor, split it again in high and low part, and finally return to the
read instruction the part that it was reading.

The second way that can be followed in order to retrieve the time elapsed
is to employ the QueryPerformanceCounter. Since it is only a wrapper of
NtQueryPerformanceCounter, we hooked directly the system call. Following
this strategy after the execution we divide the value of the field QuadPart (a
signed 64-bit integer) inside the LARGE_INTEGER struct returned by the syscall,
with a user defined constant.

CPU Time. The last technique that we consider in order to defeat the time
attack is the use of the assembly instruction rdtsc. This assembly instruction
returns the processor timestamp defined as the number of clock cycles elapsed
since the last reset. Since this is a 64-bit integer it returns, in a i386 architecture,
the high part and the low part respectively in EDX and EAX registers. In order to
fake the value returned from this instruction we recognize the rdtsc in a trace,
then after its execution, we insert a call to a function that compose the 64-bit



Table 1: Top 20 malware families in our dataset.
Family No. Samples No. Evasive No. Techniques

virlock 619 (8.8%) 600 (96.9%) 2
confidence 505 (7.2%) 68 (13.5%) 4
virut 242 (3.5%) 13 (5.4%) 2
mira 230 (3.3%) 9 (3.9%) 1
upatre 187 (2.7%) 2 (1.1%) 1
lamer 171 (2.4%) 0 (0.0%) 0
sivis 168 (2.4%) 0 (0.0%) 0
installcore 164 (2.3%) 0 (0.0%) 0
ipamor 164 (2.3%) 0 (0.0%) 0
vtflooder 152 (2.2%) 2 (1.3%) 1
downloadguide 135 (1.9%) 1 (0.7%) 1
bladabindi 103 (1.5%) 22 (21.4%) 2
dealply 98 (1.4%) 1 (1.0%) 1
mydoom 88 (1.3%) 0 (0.0%) 0
parite 86 (1.2%) 18 (20.9%) 1
zusy 84 (1.2%) 10 (11.9%) 3
installmonster 79 (1.1%) 2 (2.5%) 1
allaple 68 (1.0%) 0 (0.0%) 0
razy 66 (0.9%) 10 (15.2%) 3
neshta 62 (0.9%) 0 (0.0%) 0

Others 3,535 335 4

Total 7,006 1,093 (15.6%) 5

integer as specified (EDX:EAX), divide it by a user defined constant, and patch the
value of the two registers according to their new value.

4 Large-scale Anti-Instrumentation Measurement

We performed a study to measure which anti-instrumentation techniques are
used by recent, malware samples found in the wild. To do this, we refer to the
techniques that we described in the previous sections.
Environment Setup. We prepared a set of identical VirtualBox virtual ma-
chines running Windows 7 (64-bit), in which we installed common utilities such
as Adobe Reader, alternative Web browsers, and media players. We also included
typical user data such as saved credentials and browser history and, at runtime,
our analysis system emulates basic user activity (e.g., moving the mouse, launch-
ing applications). This is useful to create a legitimate-looking environment. As
suggested by Rossow et al. [32], we followed the best practices for malware ex-
periments. We let the malware samples run for 5 minutes allowing samples to
communicate with their control servers, and denying any potentially harmful traf-
fic (e.g., spam). We automated our analysis environment to manage and control
such VMs. For each analysis, our agent inside the VM receives the sample to be
analyzed and executes it, instrumenting it with Arancino. After each execution,
we save the logs produced by Arancino and roll back each virtual machine to a
clean snapshot.
Dataset. Between October 2016 and February 2017, we used the VirusTotal Intel-
ligence API to obtain the most recent Windows executables labeled as malicious
by at least 3 AVs. We obtained a dataset of 7,006 samples. We then leveraged



Table 2: Top 10 most evasive malware families in our dataset. We considered only
the families with at least 10 samples.
Family No. Samples No. Evasive No. Techniques

sfone 19 19 (100.0%) 1
unruy 11 11 (100.0%) 1
virlock 619 600 (96.9%) 2
vilsel 13 8 (61.5%) 2
urelas 19 9 (47.4%) 2
confuser 18 8 (44.4%) 1
vobfus 52 19 (36.5%) 1
swisyn 29 10 (34.5%) 1
softcnapp 17 5 (29.4%) 1
downloadsponsor 24 7 (29.2%) 1

Table 3: Anti-instrumentation techniques used by malware in our dataset.
Category Technique No. Samples

Code Cache Artifacts Self-modifying code 897
Environment Artifacts Parent detection 259
JIT Compiler Detection Write on protected memory region 40
Environment Artifacts Leak DEBUG flag 5
Environment Artifacts Memory fingerprinting 3

AVClass [34] to cluster AV labels and identify each sample’s family. Table 1 shows
the top 20 malware families in our dataset.

Results. We found out that 1,093 (15.6%) samples presented at least one anti-
instrumentation technique. In particular, as shown in Table 3, we identified mal-
ware employing 5 different techniques, with the majority of the samples exposing
self-modifying code capabilities. Table 2 shows the 10 most evasive malware fami-
lies in our dataset. We leveraged AVClass [34] to determine the most likely family
of each sample, and then we ranked families with more than 10 samples by the
percentage of samples showing at least one anti-instrumentation technique. Inter-
estingly, from Tables 1 and 3 we can see that, in some cases, not all the samples of
a given family presented anti-instrumentation capabilities. This might mean that,
at a certain point, malware authors decided to update their samples providing
them with such features.

As further discussed in Section 7, we cannot assure that some of the detected
anti-instrumentation techniques were added for the precise purpose of DBI evasion
(instead of generic evasion techniques). Intuitively, this is dependent from the
specific technique. For instance, while the detection of parent process could be
performed by malware for different reasons (e.g., detecting a debugger or a specific
agent inside a known sandbox) other than spotting the presence of Intel Pin,
detecting writes and reads on protected memory regions is more specific to DBI-
evasion.

From our study, we conclude that ant-instrumentation techniques, are em-
ployed by a significant amount of malware samples, motivating the effort in
enforcing DBI tools and showing that systems such as Arancino can be useful
in defeating these evasion techniques.



5 Application Scenario: Unpacker

On top of Arancino, we implemented a generic, anti-instrumentation-resilient
unpacker. Our tool leverages the functionality provided by Intel Pin to track,
with an instruction level granularity, the memory addresses that are written and
then executed. As explained in Section 5.1, first of all, we identify a subset of
instructions that are relevant for our analysis. Then, we keep track of each written
memory region in order to create a list of contiguous written memory ranges,
defined as write intervals. At the same time, we check if each executed instruction
belongs to a write interval —this is the typical behavior of a packed binary that
is executing the unpacked layer. If so, we trigger a further stage that consists
of: (1) Dumping the main image of the PE and a memory range of the heap;
(2) Reconstructing the Import Address Table (IAT) and generating the correct
Import Directory; (3) Applying a set of heuristics (entropy, long jump, jump outer
section, pushad popad, init function calls) to evaluate if the current instruction is
the Original Entry Point (OEP). The result of our tool is a set of memory dumps
or reconstructed PEs (depending on the success of the IAT fixing phase), and a
report which includes the values of each heuristic for every dump. Based on those
heuristics we can choose the best dump.

5.1 Unpacking Phases

In this section, we describe more in detail our unpacking approach.
Instructions Filtering. Since our tool works with an instruction level granu-
larity, limiting our analysis to the relevant instructions of the program is critical.
For this reason, we have introduced some filters, based on the common behaviors
showed by packers. Specifically, we do not track two kinds of instructions: (1)
write instruction on the Thread Environment Block (TEB) and on the stack, and
(2) instruction executed by known Windows libraries.

The write instructions on the stack are ignored because unpacking code on the
stack is not common. The same consideration can be applied to the instructions
that write on the TEB, since most of these writes are related to the creation of
exception handlers. The instructions executed by known Windows libraries are
never considered when checking if the current instruction address is contained
inside a write interval because this would mean that the packer writes the malicious
payload in the address space of a known Windows library. This behavior has never
been identified in the analyzed packers; moreover, this approach would break the
application if it explicitly uses one of the functions which have been overwritten.
Written Addresses Tracing. In order to correctly operate, most packers need
to write the original program in memory and then execute it. We can detect this
behavior by tracing each write operation performed by the instrumented program
and annotating a set of memory ranges that identify contiguously written memory
addresses.
WxorX Addresses Notifier. As expressed before, packers need to both write
and execute a specific memory region. Indeed, this behavior is distant from how



common benign programs act during execution. Although some benign programs
may present such behavior, e.g., JIT compiler, virtual machine, programming
languages interpreters, we can exploit such behavior as an evidence of something
that was unpacked. Therefore, the first time we detect that the instruction pointer
is inside one of the traced memory ranges, we trigger the the analysis and dumping
routines, and mark the memory range as unpacked. We call the property of having
a memory region that is either written or executed WxorX rule.

Dumping Process. While many memory dumping tools only look at the main
module of the target program, which includes sections containing code, data, and
the resources used by the binary, in order to handle more unpackers, we need to
collect also code that has been unpacked on dynamic memory regions such as
the heap. If the packer’s stub unpacks new code on the heap and then redirects
the execution there, a naive dump strategy that only looks at the sections of the
PE would miss the unpacked code. We correctly catch this behavior by using the
WxorX address notifier, and including in the dump all the memory regions that
contain the unpacked code.

IAT Fixing and Import Directory Reconstruction.We focus our attention
on three different techniques. The first technique we have to deal with is called
IAT redirection: instead of having the addresses of the APIs directly in the
IAT, entries contain addresses that point to jump instructions to the real API
functions. The second technique is known as stolen API : it copies N instructions
of the API function code at the address pointed by the IAT entry and then inserts
an unconditional absolute jump to the N+1 instruction to the real API function
code. The last one is a generalization of the stolen API technique. It differs from
stolen API function because multiple parts of the original API functions are copied
and they are connected together by absolute jumps until the last one reaches the
original API code (Figure 1).

Thanks to Intel Pin, our system can deal with all these techniques using static
analysis. Indeed, for each IAT entry we statically follow the control flow counting
the number of instructions different from jumps, those are instructions belonging
to the real API function (green, yellow and orange instruction in Figure 1). We
follow the control flow until the target of a jump is inside a memory region occupied
by the DLL. When the target address and the instructions count are retrieved, the
value of the current analyzed IAT entry is replaced with the difference between
the target address and the instructions count.

Heuristics Description. We used a set of heuristics during the unpacking pro-
cess to understand when the program reaches the Original Entry Point (OEP)
and can be considered fully unpacked. Howewer, as demonstrated in [33], un-
derstanding if the unpacking process is finished is not a decidable problem. The
heuristics we have collected come from different works and books [36], [24], and
we use them to tag a taken dump. These tags are useful at the end of the work of
our tool in order to understand if a taken dump and the associated reconstructed
PE represent the original program or not (since often the number of taken dumps
is more than one). Here we describe the heuristics that we used:



...
sub ecx, 1

jmp 0x75000014

...
0x04000012

...
add eax, 4

mov ebx, [esp]

jmp 0x04001000

...
pop ebp

push eax

jmp 0x03a4a5a6

...

...
add eax,4

mov ebx, [esp]

pop ebp

push eax

sub ecx,1

MessageBox() + 0x14

MessageBox() + 0x18

...

0x03a4a5a6

0x04000000
IAT entry

0x04000012

0x04010000

1

2

3

4

0x75000000
Entry point
MessageBox
API

Figure 1: (1) The execution is redirected to the address inside the IAT entry. (2)
The first two instructions of the original API are executed followed by a jump to
the next chunk of instructions. (3) The chunk is executed together with another
jump instruction. (4) The last instruction is executed and finally a jump goes
inside the original memory space of the API.

– Entropy. We trace the entropy evolution of the main module of the target
program and trigger a flag when the difference of the current entropy compared
with the original one is greater than a threshold, as shown by Arora et al. [6].

– Jump outer section. A long jump is defined as a jump in which the offset
between the target address and the previous EIP is larger than a threshold.
This scenario identifies the typical behavior that transfers control from the
packer’s stub to the original program’s code, or to another stub.

– Registers context switch. Usually stubs of packers show a particular behavior
that is storing on the stack values of all the registers with a pushad instruc-
tion and, after the unpacking process has been completed, using a popad
instruction to restore the previously saved values. This is done to maintain
the correct context of the registers and avoid issues when the stub of a packer
resumes the execution to the original code. Hence, the two instructions can
be used to delimit the unpacking stub and help to identify the OEP.

– Suspicious imports. A packed binary usually includes very few imports, and
reconstructs the correct IAT only at run-time. This is an obfuscation technique
used by packers in order to hide the real behavior of the malware. The purpose
of this heuristic is to search, in the reconstructed Import Directory, functions
commonly used by the malware and not by the unpacking stub. For example,
if a malware has to contact an Internet domain to download some malicious
code, it has to have in its imports some Internet communication APIs, such as
connect and send. Since the unpacking stub generally does not need them
to perform its job, when the binary is packed, it does not have these API
functions in its Import Directory initially. In some cases, the packed binary has
as imports only the GetProcAddress and LoadLibrary functions, because
these two are then used to dynamically load further functions.



6 Testing and Validation

6.1 Defeating Anti-instrumentation Techniques

We tested Arancino to evaluate its capabilities in defeating anti-instrumentation
techniques. To do so, we leveraged eXait [15], a benchmark tool specifically de-
signed to highlight different techniques aimed at spotting the presence of Intel
Pin instrumentation. First, we instrumented and executed eXait with Intel Pin,
then we did the same using Arancino. In both cases, we looked at the output of
eXait to check if any of the techniques detected the instrumentation framework.
Specifically, eXait implemented the following detection techniques: detecting com-
mon JIT API calls, detecting code and string artifacts, leaking the effective EIP,
detecting by page permission, detecting ntdll hooks, detecting parent process,
measuring overhead. While instrumented with Intel Pin, eXait flagged all of these
techniques, spotting the presence of the DBI. Instead, when we instrumented it
using Arancino, eXait did not produce any positive results, showing that our
system successfully hid the presence of Intel Pin.

6.2 Unpacking Capabilities

Testing Known Packers. We tested our unpacker against 14 known packers,
used to pack two binaries: a simple Message-Box (100KB) and WinRAR (2MB).
We used different programs with different sizes because the behavior of a packer
can be influenced by the size of the target program. Table 4 shows the effectiveness
of our generic unpacking algorithm and PE reconstruction system against the
different packers. For some packers, such as ASProtect, eXpressor and Obsidium
we managed to take a dump at the correct OEP but, due to the presence of IAT
obfuscation techniques, we were not able to reconstruct a working PE.

Unpacking Malware Samples Found in the Wild. We downloaded random
samples from VirusTotal and we classified them with Exeinfo PE [1], a packer
detection tool, in order to discard not packed samples. Eventually, we obtained
a dataset of 1,066 packed samples, protected by known or custom packers, the
latter tagged by Exeinfo PE as “unknown.” Then, we tested the effectiveness
of our unpacker against malicious samples spotted in the wild protected with
both known and unknown packers. We automated the analysis of such samples
using a VirtualBox VM and letting each sample, instrumented with our unpacker,
run for 5 minutes. After the analysis performed by our tool, all the results were
manually validated. Our unpacker managed to successfully unpack 808 (75.8%)
samples, producing a working executable in 669 cases, while it failed to unpack
the remaining 258 ones. The reasons of the failures can be different: evading the
virtual environment, messing with the environment in a way that our script cannot
manage to collect results, employing IAT obfuscation techniques, or exploiting
packing techniques with a level of complexity out of our scope.



Table 4: Results of our tests against known packers. For each packer, here we
show the packed program, if the original code of the binary has been successfully
unpacked (U), if the reconstructed PE is a working executable (EX), the number
of imports observed in the packed program, and the number of imports observed
in the reconstructed PE.

Packed Recon/Tot
Packer Binary U EX Imports Imports

Upx MessageBox X X 8 55/55
FSG MessageBox X X 2 55/55
Mew MessageBox X X 2 55/55
Mpresss MessageBox X X 2 55/55
Obsidium MessageBox X 7 4 4/55
PECompact MessageBox X X 4 55/55
EXEpacker MessageBox X X 8 55/55
WinUpack MessageBox X X 2 55/55
ezip MessageBox X X 4 55/55
Xcomp MessageBox X X 5 55/55
PElock MessageBox X 7 2 3/55
Asprotect MessageBox X 7 7 46/55
Aspack MessageBox X X 3 55/55
Hyperion MessageBox X X 2 55/55
Upx WinRAR X X 16 433/433
FSG WinRAR X X 2 433/433
Mew WinRAR X X 2 433/433
Mpress WinRAR X X 12 433/433
Obsidium WinRAR X 7 2 0/433
PEcompact WinRAR X X 14 433/433
EXEpacker WinRAR X X 16 433/433
WinUpack WinRAR X X 2 433/433
ezip WinRAR X X 12 433/433
Xcomp WinRAR X X 5 433/433
PElock WinRAR X 7 2 71/433
Asprotect WinRAR X X 16 433/433
Aspack WinRAR X X 13 433/433
Hyperion WinRAR X X 2 433/433

6.3 Case studies

In this Section, we present two case studies that show how known packers employ
anti-instrumentation capabilities, and how Arancino successfully managed to
overcome these techniques and instrument the binaries.

Obsidium. We found that Obsidium [2] performs a call to the func-
tion QueryInformationProcess using as ProcessInformationClass
argument an undocumented class called ProcessDebugFlags. When
QueryInformationProcess is called with this parameter, it returns the
inverse of the field EPROCESS.NoDebugInherit, i.e., TRUE if the process is
debugged, FALSE otherwise. Since this flag is set when a program is instrumented
with Intel Pin, this attack can successfully reveal the presence of the DBI in mem-
ory. Instead, using Arancino, we managed to defeat this anti-instrumentation
technique. In fact, by hooking the NtQueryInformationProcess system call and
patching the ProcessInformation struct, as described in Section 3, Arancino
correctly managed to instrument and execute a test binary. As result, our
dynamic unpacker successfully unpacked samples packed with Obsidium.



Table 5: Overhead introduced by Arancino to defeat each technique.
Technique Execution Instrumentation Arancino Arancino

Time [s] Time [s] Time [s] Overhead [%]

EIP Detection - int2e 0.01 0.71 1.15 61%
EIP Detection - fsave 0.01 0.90 1.20 33%
EIP Detection - fxsave 0.01 0.90 1.15 27%
EIP Detection - fstenv 0.01 0.82 1.05 28%
Memory Page Permissions 0.01 0.82 0.90 9%
DLL Hook 0.01 0.81 2.00 145%
Memory Allocations 0.01 2.00 2.90 45%
Windows Time 0.01 2.93 5.51 88%
Parent Detection 0.02 0.85 0.87 2%
Memory Fingerprinting 0.04 2.00 7.09 254.5%

PEspin. We found that PEspin [3] makes use of self-modifying code. In fact,
when we instrumented a test binary packed with PEspin without Arancino, the
program crashed. Instead, when using our tool, the execution reached its normal
end flawlessly. To understand precisely the reason of the crash, we manually
analyzed the packed binary. We ran it in a debugger and we identified two
instructions, IN and OUT that provide a direct access to I/O devices and require to
be executed in protected mode. As a consequence, a program running in user space,
which is not allowed to do it, crashes. During normal executions, these instructions
are overwritten before EIP reaches them, so they are never executed and they
never cause the crash of the program. However, when the binary is instrumented,
Intel Pin places a trace composed by the two instructions in the code cache,
eventually running them. Instead, as explained in Section 3.1, Arancino is able
to detect if instructions are modified, and discard the current trace forcing Intel
Pin to collect a new one. This avoids the crash of the program.

6.4 Performance

The efforts made to improve the transparency of Intel Pin come with a perfor-
mance cost. We measured three different times. First, the execution time of the
program when not instrumented, used as reference to estimate the final overhead.
Second, execution time of the instrumented executable without Arancino, used
to evaluate the overhead introduced by Intel Pin alone. Finally, the execution time
of the executable instrumented with Arancino, used to evaluate the overhead
introduced by our tool. As shown in Table 5 the overhead introduced by our coun-
termeasures is strictly dependent from the specific technique. For instance, while
handling int2e, fsave, fxsave, fstenv instructions, Arancino introduces
a low overhead. On the other hand, when we defeat detection of DLL hooks or
memory fingerprinting, the overhead introduced by Arancino is high, because
Arancino has to analyze each read instruction to find its destination address
and check if it belongs to the whitelist.

7 Discussion of Limitations

Our work presents some limitation that we describe in the following paragraphs.



Arancino’s Artifacts. Even if Arancino correctly hides a vast number of
DBI artifacts, we cannot guarantee that it is completely immune to detection
attempts. In fact, some of the anti-evasion techniques that we proposed might
be leveraged as detection criteria. For instance, malware could exploit that fact
that Arancino hides all the protected memory pages. Specifically, a malicious
sample could try to allocate memory through the entire address space failing to
access memory regions that are already allocated for those hidden pages. This
does not tell the analyzed sample which libraries are loaded or the reason the
OS is denying memory allocation, but it is a particular behavior that could
be fingerprinted. Another example is the denied access to CSRSS.exe. On one
side this prevents to know the list of running processes, on the other side this
could be detected by a malware sample. However, although these limitations are
present in the current implementation of Arancino, it is possible to implement
more sophisticated mechanisms to hide such artifacts (e.g., allowing access to
CSRSS.exe and altering its internal data structures) and partially overcome these
limitations. In summary, we believe that Arancino definitely raises the bar for
the attacker, making DBI evasion much harder.
Anti-Instrumentation vs. General Artifacts. The techniques we observed
to identify DBI-evasion attempts are indicators of potential anti-instrumentation
attacks, but they do not capture the intention of the malware authors. For instance,
a self-modifying behavior, even if it breaks the use of code cache, may be used
as an obfuscation technique as well as an anti-instrumentation feature. Similarly,
the detection of parent process could be performed for different reasons (e.g.,
detecting agents of a known sandbox) other than spotting the presence of a DBI
tool. We can only speculate why malware authors are adopting the techniques
that we identified in our study. Independently from the intention of malware
authors, our experiments showed that Arancino is able to hide many artifacts
that malware uses to evade analysis systems.
Measurements. We based our approach and our study on the known techniques
employed to detect instrumented environment. While we cannot assure that the
current version of Arancino covers all the possible techniques used to detect the
presence of a DBI tool, our approach and our tool can be easily extended in order
to add support for new ones.
Environment Setup.We performed our study running malware on a virtualized
environment (i.e., VirtualBox). While we setup our VMs to minimize the presence
of VirtualBox artifacts, sophisticated malware samples can detect they are running
in a virtualized environment and hide their malicious behavior. However, this is
not a fundamental limitation of our approach, in fact, Arancino can perfectly
work on top of bare-metal system such as [20] [21] [37] improving the quality of
such systems without affecting the stealthiness.
Implementation. Arancino currently supports only 32-bit binaries. Extending
Arancino to 64-bit binaries can introduce a new attack vector that exploits
the Windows 64-bit backward compatibility with 32-bit applications to spot the
presence of a DBI, making it crash. In fact, in order to implement the backward
compatibility Windows runs each application using two different code segments,



one for the execution in 32-bit compatibility mode and one for the 64-bit mode.
Each segment has a flag indicating in which mode its instructions have to be
interpreted. Particular instructions, such as far jmp or far ret, can be used
to jump from one segment to the other. This behavior can cause the program
to switch between the 32- and the 64-bit segments. Unfortunately, DBI tools
cannot correctly handle this behavior and, consequently, they may disassemble
and instructions wrongly or, in the worst case, they may be unable to disassemble
them at all. While we leave the implementation of 64-bit support for future work,
the majority of malware samples nowadays are 32-bit binaries.
Performance. As shown in Section 6.4, Arancino inevitably introduces an
overhead on the execution of the instrumented binary. While this overhead is often
acceptable, it is quite high when Arancino handles some particular techniques.
Unpacker. First, our unpacker does not handle the process hollowing techniques,
so runtime unpacking that injects the payload inside new processes and/or make
use of DLL injection techniques are not considered by our tool. Second, if a
packer implements a custom IAT obfuscation technique, we cannot reconstruct a
runnable PE. Third, it does not track unpacking on the stack, so if the original
code of the program is written on the stack our tool cannot dump the correct
memory region and consequently it cannot reconstruct a working PE. However,
this technique is not commonly employed by known packers. Finally, referring
to the packer taxonomy presented in [38], our unpacker can handle packers with
a maximum level of complexity of 4. To handle more sophisticated packer, our
approach could be combined with approaches such as [39], which is less generic
and targets specifically complex packers.

8 Related Work

DBI-Evasive Malware. Despite the fact that it is theoretically impossible to
build a completely transparent analysis tool, different works have been done
regarding the development of stealthy instrumentation systems.

SPiKE [41] adopts an approach completely different from other DBI tools,
such as Intel Pin or DynamoRIO, because it does not use a JIT compiler in order
to instrument traces. Instead, it places a series of breakpoints in memory, called
drifters, that, when are hit, trigger appropriate hooks, called instruments. The
drifters are implemented following the technique explained in VAMPiRE [40],
which guarantees a certain level of transparency and the impossibility of removal
by the malware—they are placed in not accessible memory regions. While this
work is stealthier than other DBI tools, it is also much less powerful than the
aforementioned ones, because it offers very few APIs. Another work that relies
on setting stealthy breakpoint is

SPIDER [14]. It duplicates the program in two different views: the code view,
and the data view. The former can be modified by the instrumentation framework
with the insertion of breakpoint and it is where the instructions are fetched, while
the latter is where all the write and read operations made by the program are



redirected and it can be modified only by the program itself, ensuring transparency
of the framework. If the instruction fetched and executed from the code view hits
a breakpoint, then a user-defined hook is invoked. As the work described before,
SPIDER is less powerful than other DBI tools, as it only works at function-level.

Malware Unpacking. Ugarte-Pedrero et al. [38] recently proposed a taxonomy
to classify packers by their complexity. Generally, we can classify unpackers in
three categories: static [13], dynamic and hybrid unpackers. Most of the recent
proposed works are dynamic unpackers [17, 44, 43, 7, 31, 8, 18]. These approaches
leverage the fact that packers need of unpack the code in memory at runtime to
obtain the unpacked code.

Omniunpack [25], monitors memory page writes, exploiting a memory pro-
tection mechanism provided by the operating system, to access unpacked code
pages and notify external tools when such pages are ready to be analyzed. An-
other attempt of exploiting operating system capabilities was made in Eureka [35].
This tool uses a kernel driver to trace system calls and identify the time when
the analyzed sample is unpacked in memory. Similarly to our tool, Renovo [19]
instruments a packed binary to trace writes in memory and execute until the
instruction pointer fall inside written regions. Unfortunately, Renovo is easily de-
tectable by anti-instrumentation techniques. Moreover, its output is a not working
PE because it is does not try to recover the IAT table. Rambo [39] exploits a
multi-path execution technique to trigger the unpacking of code regions. This
is useful to defeat those packers who check the environment to understand if
they are under analysis. Complementary to our approach, Rambo tries to solve
this problem by forcing the execution of not executed code, while our unpacker
exploits Arancino to hide artifacts.

Hybrid unpacking mixes some static analysis techniques with dynamics ones.
The strategy for hybrid unpacking can generally follow two approaches. First,
static analysis followed by dynamic analysis: An initial static analysis phase is
performed in order to extract a model of how the execution will look like and,
after that the program is executed, the static model built before is checked against
the dynamically executed instructions [33]. Second, dynamic analysis followed
by static analysis: This scheme relies on collecting traces of the execution of the
packed program, and eventually extracting, by static analysis, the interface and
the body of the unpacking function [11].

Our dynamic unpacker provides, respect to the existing solutions, a richer
synergy of heuristics aimed to automatically detect a possible OEP. Following the
taxonomy proposed in [38], our unpacker is able to handle packers up to type
4. These packers are multi-layer, cyclic and interleaved. This means that they
use different layers with both forward and backward transitions. Moreover, our
unpacking algorithm is more generic respect to solution such as [22] since we
remove the assumption about the last written at page: We do not assume that
the last written and executed page is the one that contains the OEP; in fact, as
demonstrated in [5], this is not always necessarily true. Finally, while previous
approaches aim only at unpacking obfuscated code, our tool is able, in most of
the cases, to produce a working (i.e., runnable) executable.



9 Conclusions

Dynamic Binary Instrumentation (DBI) frameworks provide useful features in the
analysis of malware samples. However, modern malware samples implement anti-
instrumentation techniques to detect if they are being instrumented. We proposed
a practical approach to enforce DBI frameworks and make them stealthier against
anti-instrumentation attacks by studying the common techniques used by malware
to detect their presence, and proposing a set of countermeasures to address such
techniques. We implemented our approach in Arancino on top of Intel Pin.
Then, we used Arancino to perform a measurement of the anti-instrumentation
techniques employed by malware. We analyzed 7,006 recent malware samples
showing that 15.6% of them employ at least one anti-instrumentation technique.
Moreover, we leveraged our evasion-resilient approach to implement a generic
unpacker showing interesting case studies of the anti-instrumentation techniques
used by known packers. Combining Arancino with our unpacker we provided a
tool that can successfully analyze malware that employs both anti-static-analysis
and anti-instrumentation techniques.
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