
Reversing and Fuzzing the Google Titan M Chip
Damiano Melotti

University of Twente & Quarkslab

dmelotti@quarkslab.com

Maxime Rossi-Bellom

Quarkslab

mrossibellom@quarkslab.com

Andrea Continella

University of Twente

a.continella@utwente.nl

ABSTRACT
Google recently introduced a secure chip called Titan M in its Pixel

smartphones, enabling the implementation of a Trusted Execu-

tion Environment (TEE) in Tamper Resistant Hardware. TEEs have

been proven effective in reducing the attack surface exposed by

smartphones, by protecting specific security-sensitive operations.

However, studies have shown that TEE code and execution can also

be targeted and exploited by attackers, therefore, studying their

security lays the basis of the trust we have in their features.

In this paper, we provide the first security analysis of Titan M.

First, we reverse engineer the firmware and we review the open

source code in the Android OS that is responsible for the communi-

cation with the chip. By exploiting a known vulnerability, we then

dynamically examine the memory layout and the internals of the

chip. Finally, leveraging the acquired knowledge, we design and

implement a structure-aware black-box fuzzer.

Using our fuzzer, we rediscover several known vulnerabilities

after a few seconds of testing, proving the effectiveness of our

solution. In addition, we identify and report a new vulnerability in

the latest version of the firmware.

CCS CONCEPTS
• Security and privacy → Trusted computing; Mobile plat-
form security; Embedded systems security.

KEYWORDS
Android Security, Trusted Execution Environments, Reverse Engi-

neering, Vulnerability Research, Fuzzing

ACM Reference Format:
Damiano Melotti, Maxime Rossi-Bellom, and Andrea Continella. 2021. Re-

versing and Fuzzing the Google Titan M Chip. In Proceedings of ROOTS
’21: ACM Reversing and Offensive-Oriented Trends Symposium 2021 (ROOTS)
(ROOTS’21). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3503921.3503922

1 INTRODUCTION
In 2018, Google launched the Pixel 3 smartphone. Among its many

improved features and specifications, this device was the first one

embedding Titan M, a secure hardware module specifically built

for Pixel devices to improve their level of security [40].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ROOTS’21, November 18–19, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/3503921.3503922

Deploying security measures at the hardware level is not new,

as described in Section 2. However, it is not so common for mobile

devices to have a dedicated chip, physically separated from the

main CPU, implementing a Trusted Execution Environment (TEE)

and ensuring tamper-resistant properties.

When the chipwas announced, Google reported that its firmware

would be open source [33]. To date, no source code has been pub-

lished and not much information is available about the internals of

this chip. Despite that, to motivate researchers into investigating

this module, Google introduced a special reward of one million dol-

lars for whoever can find a full-chain remote code execution exploit

with persistence [27]. Indeed, Titan M represents the so-called Root
of Trust of a device, the baseline all security features rely upon: in

case of compromise, the target falls completely under the attacker’s

control.

Given the lack of available research, in this paper we present

the first investigation of Titan M. We start by focusing on reverse

engineering the firmware of the chip. In parallel, we review the

code in the Android Open Source Project (AOSP) that enables the

communication with the chip. Using dynamic instrumentation, we

trace the messages exchanged between the Android OS and TitanM,

validating the hypothesis we derive from our static analysis. We

then exploit a known vulnerability to understand the challenges

related to gaining control of the chip and to obtain a picture on

the implemented protections. Finally, we design and develop a

fuzzer that, based on the grammar of the exchanged messages,

automatically tests the chip using a black-box approach.

In summary, we make the following contributions:

• We study the main components and internals of the Titan

M firmware, how it communicates with Android and which

software protections it presents; in addition, we demonstrate

the exploitability of a known vulnerability and provide the

first known code execution exploit for Titan M.

• Based on the knowledge obtained through our reversing, we

design a structure-aware black-box fuzzer, which mutates

commands—together with their parameters—accepted by the

chip and then sends them to the chip via the Android kernel.

• We implement our fuzzer and test it against both an old ver-

sion of the firmware and the latest one, discovering several

known vulnerabilities and a 0-day bug, demonstrating the

effectiveness of our approach.

In the spirit of open science, we make the code developed for

this work publicly available at https://github.com/quarkslab/titanm.

We responsibly reported all our findings to the affected vendors

following the ethical guidelines established in our community.

2 BACKGROUND
Smartphones represent one of the most complex scenarios for in-

formation security. Over the years, their computational power has

increased to a point that they can no longer be clearly distinguished

https://doi.org/10.1145/3503921.3503922
https://doi.org/10.1145/3503921.3503922
https://doi.org/10.1145/3503921.3503922
https://github.com/quarkslab/titanm

ROOTS’21, November 18–19, 2021, Vienna, Austria Damiano Melotti, Maxime Rossi-Bellom, and Andrea Continella

from computers. At the same time, they store valuable data and are

used to perform security-sensitive actions that represent interesting

targets for attackers.

Given such a broad threat model [31], and considering that the

extremely large computing base of a modern OS cannot be fully

trusted, vendors started to leverage hardware components to im-

prove the security of their systems. Among the different solutions

proposed in the past [17, 38], the concept of Trusted Execution

Environment (TEE) was introduced.

A TEE is an isolated computing area where the executed code and

processed data are protected in terms of confidentiality, integrity

and authenticity [37]. With a TEE, a new division takes place in

the OS, between the non-secure world and the secure world. The
secure world normally runs Trusted Applications (TA), authorized
software performing security-sensitive operations from within the

trusted environment. As a result of this separation, even if the non-

secure environment is fully compromised, an attacker is physically

separated from the secure one and cannot tamper with it.

Concretely, there are three ways to implement a TEE [35].

• Virtual Processor: this is the most widely adopted approach

and it consists in separating hardware resources within the

same chip, implementing the secure and non-secure world

as execution modes of the main CPU. ARM TrustZone is

certainly the most notable instance of this solution [9].

• On-SoC Processor: this solution is used by Apple in its Secure

Enclave [8]. Instead of featuring one CPU that can run in

two states, in this case there are two CPUs, a main one

dedicated to non-sensitive operations (thus running in the

non-secure world) and one for the secure state. These two

isolated processors lie together on the same System-on-Chip.

• External Coprocessor: the last option features a physically

separated and completely independent chip, handling only

security-sensitive operations. The chip can communicate

with the main CPU using various types of buses, runs its

own firmware and has full access to hardware resources. This

is the solution adopted by Google in its TitanM, which is also

the first example of a dedicated chip in an Android device.

Before, other devices only supported Secure Elements, more

limited modules only for payments or other restricted use

cases [13].

One of the main features brought by Titan M is attack surface re-

duction. Like with other trusted chips, since the firmware is limited

in terms of functionality (with a size orders of magnitude smaller

than the one of a standard OS), the probability of mounting a soft-

ware attack is significantly reduced. In addition to that, the chip

also mitigates classic hardware-level exploits such as Rowham-

mer [24, 39], Spectre, and Meltdown [25, 28, 33]. The presence of

dedicated Tamper Resistant Hardware (TRH) guarantees improved

resistance against side-channel attacks, which are one of the main

factors influencing this design choice [26, 32].

3 REVERSE ENGINEERING
We start our research by focusing on the firmware of the chip,

which can be found in the filesystem of a Google Pixel 3 smart-

phone, at the path /vendor/firmware/citadel. The firmware is

a raw binary file, not encrypted nor obfuscated. We follow two

parallel approaches to study it: on the one hand, we focus on pure

static reverse engineering, using the Ghidra disassembler and de-

compiler [4]; on the other hand, we gather additional knowledge by

reviewing the source code of the Android components responsible

for the communication with the chip.

On the AOSP, the main source of information is the folder

platform/external/nos/host, where we can find some header

files containing relevant information about the module.
1 Nos is

an abbreviation for Nugget OS, which might be a code name for

chip’s operating system. In addition, Titan M is mostly referred to

as citadel.
The repository contains the source code of the citadel_updater

tool, as well. The compiled utility, located at /vendor/bin/hw on
the device, can be used in an adb root shell, to get the running

version of the firmware and some statistics, update the chip, and

perform other actions on its current state. citadel_updater also
allows to retrieve a snapshot of the firmware dependencies: among

the third party ones, for example, we can find nanopb, the library
used to implement the communication protocol with Android (cf.

Section 3.2). By using this utility and exploring its sources, we can

better understand how the Titan integrates with Android and how

the system communicates with it, to gather some specific informa-

tion.

3.1 Firmware Internals
The memory layout of the firmware is reported in a header file in

the AOSP.
2
In total, there are four images, two RO and two RW.

Despite these names suggesting the permissions of the regions

(Read-Only and Read-Write), both can be overwritten during an

update. The RO images contain the bootloader, which verifies and

starts the main OS in the RW partition. The verification step is

based on a cryptographic signature, as to prevent firmware modi-

fication attacks. Each image is duplicated to support A/B updates,

ensuring that a valid image is always present on the device during

an update [11]. Based on such a layout, we create a custom loader

in Ghidra, allowing us to correctly map the memory of the binary

file and start reversing.

The firmware is based on Chromium Embedded Controller (EC),

an open source microcontroller OS developed by Google.
3
This

represents another useful source of information for reverse engi-

neering: many functions are very similar and they can be easily

matched thanks to the presence of debugging statements with the

same strings.

EC is a lightweight OS written in C. It is built around the concept

of tasks, which can be defined as independent execution units with

a fixed pre-allocated stack. By design, the OS does not use dynamic

allocation, thus all the memory required by a task must be explicitly

defined at compile time.

Titan M is based on an ARM Cortex-M3 CPU [33], which fea-

tures no Memory Management Unit (MMU): the memory layout is

therefore static. An optional Memory Protection Unit (MPU) can

be activated to divide the memory space into different regions with

some attributes, as explained in Section 3.3. The chip features an

1
https://android.googlesource.com/platform/external/nos/

2
https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/

android11-release/nugget/include/flash_layout.h

3
https://chromium.googlesource.com/chromiumos/platform/ec/

https://android.googlesource.com/platform/external/nos/
https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/nugget/include/flash_layout.h
https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/nugget/include/flash_layout.h
https://chromium.googlesource.com/chromiumos/platform/ec/

Reversing and Fuzzing the Google Titan M Chip ROOTS’21, November 18–19, 2021, Vienna, Austria

internal flash memory and 64 KB of RAM. Since the RAM is very

small, the code is executed directly from the flash memory.

During execution, the chip is interrupt-driven and can run in

two execution modes: handler (privileged) and thread (privileged

and non-privileged, depending on the configuration). Tasks run in

thread mode; to change execution context, a software interrupt is
raised (using the svc instruction) and processed by the scheduler,

which instead runs in handler mode [1].

The latest version of the firmware at the time of writing (0.0.3-
/brick_v0.0.8292-b3875afe2, released in June 2021) contains nine

tasks: some of them are proper Trusted Applications (TA), while

some others work in support of the OS.

• << idle >>: executed when no other tasks are;

• HOOKS: managing events and timers;

• NUGGET: responsible for OS control, implementing the re-

quired logic for password checks, firmware updates, and

other system-related commands;

• FACEAUTH: the TA providing hardware-backed support for

biometric authentication;

• AVB: the Android Verified Boot TA;

• KEYMASTER: the Keymaster TA, corresponding to the Strong-
box API in the Android Keystore [15];

• IDENTITY: the Identity TA, to securely store identity docu-

ments;

• WEAVER: the Weaver TA, which allows verification of user

lock screen factor with hardware support (the equivalent of

Gatekeeper [14]);
• CONSOLE: managing a simple console accessible from the

chip’s UART interface.

In EC, the list of tasks can be found in the ec.tasklist file.

In the Titan M firmware, instead, we can find a data structure in

memory storing for each task the value of the r0 register, a pointer

to the main routine of the task, and the associated stack size.

In its functioning, the chip is inevitably bound to the Android de-

vice and the two interact in a client-server architecture. At hardware

level, the communication is done on the Serial Peripheral Interface
(SPI) bus, connecting the secure module with the application pro-

cessor. When a message arrives on this bus, an interrupt is raised

and the dedicated routine is executed. This function iterates on the

list of tasks that use the SPI: Nugget, AVB, Keymaster, Weaver and

Identity.

On top of SPI, an actual protocol is implemented (cf. Section 3.2),

which defines a set of commands composed of a request and a

response. The SPI driver on the Titan M side reconstructs the com-

mand received from several SPI packets, and then copies it to the

memory section of the right task. Some integrity checks are per-

formed with a simple CRC. Finally, the system triggers an event,

which makes the proper task start parsing the received command.

In particular, the parser function extracts the command identifier

of the message and uses it to retrieve and call the right subroutine

from a list present in a global memory area. Finally, after decoding

the command, the operation requested by the Android system is

performed. Figure 1 shows an example for a Keymaster command

received.

Android system

SPI driver

Nugget

AVB

Keymaster

Weaver

Identity

AddRngEntropy

GenerateKey

GetKeyCharacteristics

.

.

.

Titan M

Figure 1: Reception and processing of an SPI command on
Titan M.

The mechanism used to send a response, when available, is sym-

metric. Once the command handler has processed the request, an-

other function writes it in a specific memory buffer, then notifies

the driver that – in handler mode – applies the CRC code and sends

the raw bytes on the SPI bus.

3.2 Communication with Android
The SPI messages exchanged with Titan M are encoded using Pro-
tocol Buffers (Protobuf), a language-agnostic framework to serialize

data [7]. As aforementioned, the firmware uses nanopb, a custom
Protobuf implementation for microcontrollers, written in C [6].

The underlying .proto files, defining the format of these mes-

sages, are also present in the AOSP, hence we have a clear picture

of what can be sent to (and received from) the chip via SPI. All the

applications using this bus encode data with Protobuf, except for

Nugget.

After having explored the life-cycle of a command once it arrives

on Titan M, we can now briefly go over the components involved

on the Android side, to find howwe could investigate the exchanges

dynamically. When application developers want to use one of the

hardware-backed APIs, they usually simply have to write some

high-level API calls. Behind these functions, a number of processes

interact before finally sending the command to the chip.

Let us take as an example an application requesting a Strongbox

AES key.
4
The API call forwards the request down to the Android

Runtime. The runtime communicates with the dedicated Keystore

daemon, which simply stands between the platform and the Hard-
ware Abstraction Layer (HAL) and is only accessible by internal

components. Once the execution reaches the HAL, the request is

encoded using Protobuf and sent, via some further intermediate

steps, to the citadel daemon (citadeld) using the vndbinder IPC.

4
If the application uses the Java classes KeyGenerator and KeyGenParameterSpec,
it needs to specify .setIsStrongBoxBacked(true) while building the

KeyGenParameterSpec. This does not happen by default: such a request would throw

a StrongBoxUnavailableException on devices without a TPM.

ROOTS’21, November 18–19, 2021, Vienna, Austria Damiano Melotti, Maxime Rossi-Bellom, and Andrea Continella

Application

Android

Runtime

System

daemons

System

daemons

System

daemons

HALs

citadeld

kernel driver

Titan M

Figure 2: Android components interacting to send an SPI
command to Titan M.

This daemon uses the /dev/citadel0 driver to communicate

with Titan M. libnos_datagram and libnos_transport are the

two libraries that handle the actual transmission of the raw bytes on

the SPI bus. Figure 2 schematizes the whole process on the Android

side.

A key function used at this stage is nos_call_application,
which takes as arguments the application and command identifier,

the request, and the response with their respective lengths (the

latter is filled by the function itself). After having identified this

interesting target, we use the Frida dynamic instrumentation frame-

work to trace calls to this function [3]. Thanks to the Interceptor
API, we can attach to a function exported by a shared library, in this

case libnos_transport, and explore its arguments before it starts

to execute and before it returns. In addition to passively observing

the messages, we can also modify the parameters passed to the

function, by overwriting them in memory. In other words, with

this approach we are able to simulate any interaction with Titan M

and dynamically test it.

Although effective to start exploring the details of the commu-

nication protocol, this solution clearly has some limitations for a

larger scale analysis. In fact, whenever we want to call the traced

function with custom arguments, we have to make Android gen-

erate a legitimate one, to then alter the parameters. A convenient

solution for this is /bin/keystore_cli_v2, another utility present
in the device to generate, use, and delete keys from the command

line. By writing a more complex Frida script, we actually only need

to forge a valid request once, to record the memory addresses used.

We can then alter their content and call nos_call_application
with our new parameters.

Despite these improvements, it is preferable to adopt a different

strategy, allowing us to communicate with the chip in a more linear

way, with more efficient and automatic interactions. As mentioned,

the Android system exposes the libraries responsible for communi-

cating with Titan M, which are normally used by citadeld. What

we can do, however, is writing a custom client that directly con-

nects to the driver, bypassing the citadel daemon. To achieve this,

we develop nosclient, a binary compiled with the Android Na-
tive Development Kit (NDK), which allows to send fully customized

messages to the secure module. It does not require any special

configuration on the device, apart from root privileges to open the

driver and stop citadeld, as only one process can be communicat-

ing with the driver at the same time.

nosclient is the first step towards vulnerability analysis and

automatic testing. With a relatively simple binary, we can craft

our messages with any combination of values, encode them using

Protobuf and send them leveraging the libraries from the AOSP.

In the process, we also receive a return code after each command,

from which we can derive the associated status, and the actual

encoded response from the chip. In Section 4, we show how to put

these elements together to fuzz the Titan M.

3.3 Security Features
Having built some background on the chip internals and its com-

munication protocol, in this section we dive into the actual security

features that can be found in the firmware and analyze the attack

surface exposed. Other protections relate to hardware details, since

Titan M is hardened against physical attacks with some defenses.

These are, however, outside of the scope of this paper.

First, on the Android side, we need to remark that root access

is required to interact with the chip’s driver and send custom mes-

sages. This is already a security protection against tampering with

Titan M: the Android Platform Security Model features a sand-

boxing mechanism that prevents processes to start with superuser

privileges [32]. Such mechanism can be bypassed through the so-

called rooting, which implies modifying the system to ignore access

control protections [30]. Root access can be obtained intentionally

by the user, or maliciously through exploitation of a vulnerability

(or a combination of them). Either way, this is the first step required

for an exploit chain targeting the secure chip. Still, this does not

lower the impact of a vulnerability on Titan M: in fact, the hard-

ware module should be resistant to attacks even if the kernel is

fully compromised.

As briefly mentioned above, the chip implements a boot security

measure by checking the images signatures before launching them.

In practice, the RO image selects the most recent RW image based

on the version number, checks a magic number (both these values

are specified in the header) and verifies the signature, which is

computed on the rest of the header and the actual code. During

updates, one command overwrites the (unused) RO and RW images,

invalidating the associated magic numbers. Subsequently, another

command restores them, to mark the new images as valid.

Another interesting feature accessible from Android, to interact

with the firmware, is the SPI rescue. Using the fastboot command,

included in the Android Software Development Kit, we can inter-

act with the device in bootloader mode. fastboot exposes an oem

Reversing and Fuzzing the Google Titan M Chip ROOTS’21, November 18–19, 2021, Vienna, Austria

option to execute commands related to Original Equipment Man-

ufacturer (OEM) components. Among them, we can interact with

Titan M, i.e. citadel. With fastboot oem citadel commands, we

can print information related to the chip, reset it and, most im-

portantly rescue it. The rescue feature allows to flash a rec image,

which overwrites the RW_A section, and wipes the user data stored

on the chip. Since version 0.0.3/brick_v0.0.8232-b1e3ea340, a rec file
is present on the Android filesystem, at the same path as the full

binary file of the firmware. Interestingly, with the citadel rescue
command and an older rec file, we can downgrade the firmware

of the Titan M. We reported this issue to Google, since an attacker

could use this feature to flash a vulnerable version on the chip. The

bug has now been fixed and has been assigned CVE-2021-1043.

Since the Titan M firmware is very simple, we do not observe the

standard protections that can be found on more complex operating

systems. Measures like Address Space Layout Randomization and

such cannot be adopted, given the absence of virtual memory. The

simplicity of the chip is, however, a strength point, as it is gener-

ally agreed that the larger a code base, the more vulnerabilities

it contains. To this end, not using dynamic allocation is another

design choice that excludes entire classes of bugs related to runtime

memory management. Finally, relying on a third-party solution for

decoding potentially untrusted messages (Protobuf and its nanopb
implementation) also represents a good security practice, reducing

the risk of input validation errors.

Indeed, memory corruption bugs are one of the main concerns in

this scenario, as other case studies have shown [19, 22]. In addition

to the security-centric design choices we just outlined, Titan M

features at least two practical exploit mitigation measures against

this type of attacks.

The first one relies on the hardware support given by the chip

itself. The ARM Cortex-M3 CPU features an optional Memory Pro-
tection Unit (MPU), which allows to divide the memory map into

up to 8 regions, each of them with a specific location, size, at-

tributes and permissions [2]. The MPU allows to set a region as

non-executable and, in practice, this is used to disable instruction

fetching on the stack. While reversing the firmware, we can find

the appropriate functions that manipulate the MPU configuration,

by accessing the corresponding registers.

The firmware also contains a simple software control to detect

memory overflows: the stack area of each task is initialized with a

hardcoded stack canary, of value 0xdeadd00d. The scheduler (that
runs in handler mode, hence using a separate stack) checks the

content of the address pointed by the process stack pointer before

switching tasks, raising an interrupt that leads to a reboot if the

canary is not found.

Stack canaries are a common exploit mitigation technique, which

theoretically aim at increasing the difficulty for an attacker trying

to gain code execution using an out-of-bounds write primitive. The

inherent effectiveness of such a technique, though, relies on having

the canary set to a random value, so that the attacker cannot easily

predict it and include it in their malicious payload. Alternatively,

the canary can include null bytes, which cannot be placed in a

malicious payload if the out-of-bounds write consists in a function

manipulating a C-string. Clearly, none of these properties is met

in this case. Combined with the fairly easy access to the firmware

file, this protection is therefore practically useless, since finding the

canary value for an attacker is quite straightforward. Given these

considerations, this measure may have been implemented just as

an error detection mechanism, without aiming at improving the

security of the chip. Initializing the stack with a recognizable value,

in fact, allows the chip to observe when too much memory is used.

3.4 Known Vulnerability Exploitation
All these findings are the result of static reverse engineering, track-

ing the first functions executed at boot, which are responsible for

setting up the chip’s memory. Despite the firmware not being ob-

fuscated nor particularly hardened against reversing, this code uses

hardware registers mapped in memory and optimized constructs,

therefore building an accurate picture of the underlying operations

is not trivial. In addition, parts of the logic related to the module

set-up is contained in the Boot Read-Only Memory (BROM), the only
part of the firmware we do not have access to.

Given the aforementioned ability to downgrade the firmware, we

can then explore the possibility of exploiting a known vulnerability

in an older version of the firmware, with the goal of obtaining code

execution and using it to gain a better visibility over the internals

of Titan M.

Vulnerabilities in Android are reported on a monthly basis in

the Android Security bulletin [12]. Very few of them involve Titan

M and the related CVEs lack details. Automatic binary diffing, with

tools like bindiff [43], is certainly an option, which, nonetheless,

can be ineffective when we do not have a defined area to focus

on. In any case, once a potential vulnerability is found, it remains

non-trivial to understand if it is reachable by a maliciously crafted

command or whether it can indeed lead to code execution.

After considering different ones, we investigate a vulnerability

present in the firmware version 0.0.3/brick_v0.0.8232-b1e3ea340,
released in December 2020. Fixed in the March 2021 bulletin [16],

this vulnerability could correspond to either CVE-2021-0454, CVE-

2021-0455 or CVE-2021-0456: all of them have the same description,

thus we cannot specify which entry we are referring to.

The vulnerability is in the handler of the ICpushReaderCert
command from the Identity task. The associated request includes a

byte array and a series of 4 bytes values corresponding to offsets

and sizes of components of the byte array, as shown in Listing 1.

After decoding the request, the firmware parses the x509Cert
buffer, retrieving its sections according to the specified offsets and

sizes. Such fragments are then copied in a structure (which we call

ic_struct) located in a global memory area, outside of the Identity

task. This operation (performed using memcpy) is done without any
check on the size of the source buffer. As a result, since we can

control both the content of the buffer and its size, an overflow is

possible on the global structure.

message ICpushReaderCertRequest {
bytes x509Cert = 1;
uint32 tbsCertificateOffset = 2;
uint32 tbsCertificateSize = 3;
uint32 signatureOffset = 4;
uint32 signatureSize = 5;
uint32 publicKeyOffset = 6;
uint32 publicKeySize = 7;
uint32 signAlg = 8;

}

Listing 1: The Protobuf definition of the targeted request

ROOTS’21, November 18–19, 2021, Vienna, Austria Damiano Melotti, Maxime Rossi-Bellom, and Andrea Continella

Since ic_struct is not allocated on the stack of the vulnerable

function, we cannot hijack execution by simply overwriting the

saved return address pushed to the stack. Nonetheless, right after

the structure, we can find some runtime information related to the

management of the commands: among them, the address of the

functions used to handle the communication on the SPI bus, and

the list of callbacks associated with each command.

The exploitation strategy is therefore the following. First, we

send an ICpushReaderCert command to overflow ic_struct and

overwrite the callback related to the first SPI command (GetState
from the AVB task). We can do this by simply crafting a message

with a large x509Cert. Then, we send an empty AVB GetState
request, which triggers the callback we have just overwritten. Note

that we do not need to include the stack canary in our payload, as

the structure is allocated in a shared memory area and not on the

stack of a task.

As for the “new” callback value, we can write the address of an

existing function in the firmware. This is a practical solution to

show a proof-of-concept for a successful exploitation, but such an

attack is not particularly powerful. Instead, we can place there the

first gadget of a Return Oriented Programming (ROP) chain, which
allows to execute different fragments of code on the firmware [36].

To mount this type of attack, however, we have to control the

stack of the AVB task (that is the context in which our attack is

executed), where to place our sequence of gadgets. This is achieved

by first calculating the expected stack pointer: since we know its

initial value, we only need to traverse how the functions of the task

manipulate it before jumping to the overwritten pointer. Once we

calculated this value, we can include it in our ICpushReaderCert
command, at an offset where it overwrites another pointer close

to ic_struct: the address of the buffer where the Nugget requests
received from the SPI are stored. This way, we can add a call to a

Nugget command to our exploitation strategy, sending our ROP-

chain, which will be copied to the overwritten address. Thanks to

this, when we finally send the AVB GetState command, the stack

already contains the sequence of gadgets composing our attack.

Figure 3 graphically reports how we exploit the buffer overflow.

At this point, we successfully achieve code execution on Titan

M. With this approach, we obtain control of the instruction pointer

in the context of a task, therefore in thread mode. By mounting a

slightly different attack (i.e., overwriting another function pointer in

the same memory area, and triggering a call to it with an additional

Nugget command), we can also gain code execution in handler

mode. This is the first known code execution exploit on the chip.

An exploit using the ROP technique is classified as a code reuse
attack, since it relies on instructions that are already present on

the target. By crafting some calls to the logging functions in the

firmware, we create an exploit that leaks any value in memory

accessible with read permission. This is a very useful primitive,

as it enables memory inspection at runtime, which can provide

insights also while studying other vulnerabilities (as we show in

Section 5). In particular, we can successfully extract the Boot ROM,

achieving the initial goal of this task. The BROM is a simple loader

that cannot be updated (thus truly Read-Only). At high level, it

verifies the RO firmware section (which is instead more complex

and can be updated) and launches it.

. . .

nugget_recv_buf

AVB GetState
AVB Load

. . .

vulnerable

memcpy

AVB $sp

First gadget

ic_struct

Nugget

SPI data

Command

handlers

Figure 3: The memory area interested by the
ICpushReaderCert vulnerability.

The main limitation of this attack, in our case, derives from the

simplicity of the firmware. In fact, there is no “special” function that

would allow us to get full control over the target. In other words,

we cannot craft a call to execve or system to obtain a shell on the

Titan M, because the OS does not support it. To achieve a similar

result, instead, we have to write our own shell code, i.e. inject a
sequence of instructions written by us and execute them. Since we

have already obtained what we had targeted, we decide to leave

this final step as future work.

In general, the key challenge with this second approach is finding

a memory area which is both writable and executable. In practice,

no such region exists by default: as explained in Section 3.3, the

MPU makes the RAM non-executable, writing on the current flash

region is not allowed and tampering with the other one would imply

failing the signature check that occurs before starting the image.

There is one potential solution to be considered: create a ROP-

chain that either disables the MPU, or changes its configuration

to make the RAM executable. We provide more details concerning

this strategy in Section 6.

4 FUZZ TESTING
Combining the in-depth reverse engineering with the vulnerabil-

ity exploitation study, we focus on vulnerability research. Using

the background we accumulated, we design and implement a new

strategy to security test Titan M, aiming at finding bugs like the

one we analyzed in Section 3.4.

A common technique that has been proven effective to test soft-

ware against this type of bugs is fuzz testing, or fuzzing [41]. This

approach is based on generating random inputs and feeding them to

the target program, monitoring its behavior and checking whether

the processing yielded a crash or an unexpected result.

Fuzzing is particularly powerful when we can instrument our

target, either at compile time or at binary level. This improves the

ability to find bugs, detecting them even if they do not lead to a

Reversing and Fuzzing the Google Titan M Chip ROOTS’21, November 18–19, 2021, Vienna, Austria

crash. Even more importantly, it generates coverage, which can be

used by the fuzzer to produce highly diversified inputs that exercise

different portions of the program’s state space.

Instrumentation is not possible on the Titan M firmware, unless

an exploit for an existing vulnerability is used. Being the code

executed directly from the flash and considering the signature

checks in place, binary rewriting is infeasible, both statically and

dynamically. The chip is therefore a good example of a black-box
target: also known as an oracle, it offers no detailed feedback during
its execution, but returns a signal that we can use to determine

whether an input was processed successfully.

Since we have an accurate view over the format of the messages,

we can design a fuzzer based on a grammar, represented by the

Protobuf definition of the commands. With such an approach, the

fuzzer does not evolve the corpus based on the coverage generated

on the target (which we do not have), but rather mutates it using

some operators, selected randomly and applied while respecting

the Protobuf model. These mutations are applied with the objective

of triggering typical input management vulnerabilities, e.g. integer

overflows.

To implement this solution, we start again with nosclient. We

remark that this native binary allows to send arbitrary messages to

the chip, by directly communicating with the system driver. After

sending a command, it retrieves a return code sent by Titan M,

together with the actual response body. Thanks to the experiments

conducted while exploiting the known vulnerability, we know that

when a memory corruption vulnerability is triggered, the command

returns an error code equal to 2 and reboots. We can find the def-

inition of these error codes in a header file in the AOSP, where 2

corresponds to APP_ERROR_INTERNAL.5 This represents our signal
to retrieve the result of a command: generalizing, when the return

code is greater than 1, the input is worth further investigation.

As a mutator, we use libprotobuf_mutator, an open-source

library that allows to randomly mutate Protobuf variables [5]. The

most important function of the library is Mutate, which takes as

arguments a Protobuf type and a size, and adds, deletes or mutates

its fields while respecting the specified size. Integrating it into

our tool is fairly simple, as we only need to continuously pick a

message, apply the mutation, send it to the chip and evaluate the

result. Figure 4 illustrates our fuzzing architecture.

5 EXPERIMENTAL EVALUATION
To implement our approach, we start by mutating requests of the

tasks that communicate on the SPI using Protobuf. As mentioned,

they are four in total: AVB, Keymaster, Identity, and Weaver. We

decide to focus on the last three and exclude the first, since many

AVB commands can only be sent in bootloader mode (to perform

secure boot) and return application-specific error codes.

We conducted our experiments on a Pixel 3 smartphone, running

Android 11 – the latest version available at the time. To obtain root

access, we used the Magisk tool. We run a first fuzzing campaign

targeting the firmware version 0.0.3/brick_v0.0.8232-b1e3ea340, the
same as the one with the vulnerability we exploited in Section 3.4.

Table 1 reports the results.

5
https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/

android11-release/nugget/include/application.h

Choose message𝑚

𝑚′ = 𝑀𝑢𝑡𝑎𝑡𝑒 (𝑚)

𝑠 = 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑚′)

Send 𝑠 via

/dev/citadel0

Process

message

𝑐 > 1?

Save corpus

Triage fuzzing input

nosclient

Titan M

Return code 𝑐

yes

no

Figure 4: The fuzzer workflow.

The ICPushReaderCert vulnerability has been successfully found
by our fuzzer, proving its effectiveness. In addition, we find sev-

eral other cases of inputs causing unexpected behavior from the

chip. ICsetAuthToken contains a stack-based buffer overflow, that

is detected thanks to the canary check. Four different command

handlers instead generate a null-pointer dereference: in particular,

the firmware retrieves a function pointer from a structure, initial-

ized with null bytes and not yet filled. This is a good use case for

the read primitive built upon the previous vulnerability, to inspect

this memory area and verify this assumption. On Titan M, a null

address is actually valid and corresponds to the Boot ROM’s vec-

tor table. After applying a small offset, the firmware jumps to this

address. This behavior is clearly unintended and causes a call to a

function in the BROM, which makes the chip halt. After trigger-

ing this vulnerability, the chip becomes unresponsive to the UART

console and keeps returning error code 4, even to valid commands.

The only way it can be restored is via a reset function exported by

libnos_datagram, or a reboot of the phone. Finally, two Keymas-

ter commands cause a simple reboot. While this is probably not

normal, we do not investigate further, since these functions have

been patched in the latest version.

These results allow us to validate the tool we developed and

demonstrate the potential of the approach. Consequently, we run a

second fuzzing campaign, this time targeting the latest version of

the firmware at the time of writing (0.0.3/brick_v0.0.8292-b3875afe2),
released in June 2021. Table 2 summarizes the results.

https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/nugget/include/application.h
https://android.googlesource.com/platform/external/nos/host/generic/+/refs/heads/android11-release/nugget/include/application.h

ROOTS’21, November 18–19, 2021, Vienna, Austria Damiano Melotti, Maxime Rossi-Bellom, and Andrea Continella

Table 1: Results of fuzzing the Titan M firmware, version 0.0.3/brick_v0.0.8232-b1e3ea340

Task Command Bug Detection Return code Avg. # of messages

Identity ICPushReaderCert Buffer overflow Chip reboots 2 74

Identity ICsetAuthToken Buffer overflow Stack canary 2 475

Identity WICaddAccessControlProfile Null-pointer dereference Chip halts 4 57

Identity WICbeginAddEntry Null-pointer dereference Chip halts 4 99

Identity WICfinishAddingEntries Null-pointer dereference Chip halts 4 82

Identity ICstartRetrieveEntryValue Null-pointer dereference Chip halts 4 105

Keymaster FinishAttestKey N/A Chip reboots 2 257

Keymaster IdentityFinishAttestKey N/A Chip reboots 2 192

Table 2: Results of fuzzing the Titan M firmware, version 0.0.3/brick_v0.0.8292-b3875afe2

Task Command Bug Detection Return code Avg. # of messages

Identity WICfinishAddingEntries Null-pointer dereference Chip halts 4 72

Identity ICstartRetrieveEntryValue Null-pointer dereference Chip halts 4 126

As we can see from the table, the latest version of the firmware

still contains two vulnerable commands, with the same underlying

function performing a null-pointer dereference that results in a

call to a BROM function. The vulnerability has been disclosed to

Google, and was not considered severe enough to be included in a

security bulletin.

All the bugs have been consistently found by the fuzzer after

few hundreds of messages at most, with a throughput stabilizing to

approximately 75 commands per second after the first crashes have

been detected. This is certainly a positive result and it suggests that

the approach is promising. On the other hand, after quickly finding

these crashes, the fuzzer does not encounter any further issue,

even with hours of execution. The reason is probably a well-known

limitation of black-box fuzzers, that is exploring only shallow states.

Without any visibility over which code branches are taken by the

inputs, the fuzzermay be only exercising the surface of the firmware.

We discuss this and other limitations in the next section.

6 DISCUSSION AND FUTUREWORK
In this work we explored several different aspects of Titan M and

its security, both statically and dynamically. By exploiting a known

vulnerability, we actively simulated the challenges of an attacker

trying to tamper with the secure chip and gain code execution. To

this end, we left as future work the implementation of an exploit

executing code injected on the chip. A possible approach to achieve

this is manipulating the MPU and creating a region with both write

and execute permissions. To gain persistence on the target, then,

we would have to write the shell code on the flash and patch the

signature checking logic, executed before launching the OS. Such

integrity control would inevitably detect changes to the flash region.

From a vulnerability research perspective, gaining code execu-

tion certainly enables more capabilities. For example, we could

mount a debugging server on the chip, allowing to break execu-

tion, inspect memory, or instrument the firmware for fuzzing. This

would not be trivial anyway, due to the peculiar communication

channel, but gives an idea of the potential features. In any case, the

final goal would be to test the latest flashed image in a RW section,

while exploiting an older one in the other section to control the

execution. While this task would technically be possible, assuming

code execution on the chip, its feasibility needs to be investigated.

Concerning the fuzzer, all the potential improvements relate to

improving its code coverage. As explained, we do not have a direct

feedback source to guide the fuzzer, but there are some options to

be explored. First, we can start by checking the actual response

returned by the commands, not only the return code. If a new

response is received from a command, a new code branch has

been exercised. In parallel, another option is exploring the UART

output, following the same principle. To do this, though, we would

have to change our fuzzing architecture, including another machine

connected to the UART interface of Titan M (we cannot achieve this

only with the Google Pixel device). Inevitably, this would impact

the fuzzer throughput.

One last potential source of feedback could come from a side

channel, such as the time required to execute a command. Execution

times distant from the average may imply new coverage. Yet, most

of the commands implement a fairly simple logic, thus inferring

information would be challenging and subject to mere noise.

Despite promising, all these solutions eventually encounter a

major limitation of fuzzers in general, that is testing stateful targets

with complex relations between messages. For example, many Key-

master commands include a KeyBlob or an OperationHandle field,
which has to be already initialized not to be discarded. Once we

identify these relations (by reversing the firmware), we can create

a corpus of valid messages and instruct the mutator not to alter

certain fields. This is another possible improvement, although at

some point we have a trade-off between the resources spent on

reverse engineering and a more accurate fuzzer.

A completely different way to approach the problem is using

emulation. After having succeeded in extracting the missing compo-

nents of the firmware, we can emulate its execution, to both explore

the internals and fuzz it. In this case, we would be in a grey-box
configuration, in which we have full visibility over code coverage.

Emulation is a very hot topic in embedded devices research; how-

ever, Titan M frequently interacts with hardware components (such

as the random number generator, the cryptographic accelerator,

Reversing and Fuzzing the Google Titan M Chip ROOTS’21, November 18–19, 2021, Vienna, Austria

etc.), and this represents an important challenge to be addressed

by an emulation-based solution. To tackle it, a hybrid solution is to

emulate only specific parts of the firmware, to simply investigate

their execution or fuzz them.

It is worth remarking that having obtained access to the BROM,

this is a particularly interesting section to test. In case a vulnerability

is found there – either via fuzzing or static reversing – it could not

be patched, as the memory is Read-Only.

Finally, Google recently presented the new Pixel 6 smartphone,

which will feature a new version of the secure chip, Titan M2 [10].

No information is available at the moment, but this is certainly a

new target for future studies based on our work.

Coordinated Disclosure
We disclosed all the vulnerabilities we found during this research

to Google, following the ethical guidelines established in our com-

munity. In this section, we provide a summary of the disclosure

process and timeline. We reported the SPI Rescue downgrade flaw

on July 23rd, 2021. On July 29th the vendor requested additional

details on our configuration and tooling, and on August 17th they

assigned severity high. On October 22nd, Google communicated

that a patch would be released in the November security bulletin

and that the vulnerability was assigned CVE-2021-1043.

The null-pointer dereference found with fuzzing was reported on

August 6th, 2021. On August 12th, the Android security team rated

the bug as not serious enough to meet the severity bar for inclusion

in a security bulletin. After we requested further details, Google

clarified that the communication with Titan M does represent a

security boundary, but a local temporary denial of service does

not have bulletin class severity. Moreover, they determined that

obtaining code execution based on this vulnerability is impossible,

unless we could demonstrate that the dereferenced value could be

controlled by an attacker. Anyway, they mentioned that the bug is

likely to be addressed in a future update, as a code hygiene fix.

7 RELATEDWORK
Since this is the first study on Titan M, there is no related work

on this chip proposed by other researchers. However, there are

relevant studies on similar scenarios or targets.

The most popular solution for building Trusted Execution Envi-

ronments is ARM TrustZone, and the recent study from Cerdeira et

al. well summarizes the most relevant research activities on its secu-

rity [19]. The authors identified three main causes of vulnerabilities

in TrustZone, namely critical implementation bugs, architectural

deficiencies, and overlooked hardware properties. We investigated

the first two on Titan M; the last point is outside of the scope of this

paper, but reviewing the hardware protection of Titan M certainly

represents an insightful research direction for future work.

Fleischer et al. published another study in which they also sum-

marize the main findings on vulnerable TEEs and the challenges for

exploitation [22]. In this paper, they note that all major commer-

cially used TEEs were compromised, highlighting the intrinsic risks

of implementing them relying on programming languages with

explicit memory management (like C and C++). We share some of

their conclusions to this end, given the findings on Titan M.

Focusing on Huawei’s TEE implementation, Busch and Dirsch

conducted a research that also starts from exploiting a known

vulnerability to acquire more accurate information on their tar-

get [18]. They then propose a solution based on symbolic execution

to investigate Trusted Applications. Symbolic execution is another

approach that has not been considered in this work, as it shares sim-

ilar challenges to emulation. Nonetheless, with enough knowledge

of the target, this can represent a valid alternative.

Apple’s Secure Enclave Processor (SEP) is another case study

similar to ours, both from the chip architecture point of view and the

closed nature of the system. In 2016, Mandt et al. presented a very

complete research at Black Hat US, following a mostly black-box

approach [29]. They tackled the chip from different perspectives,

both on the hardware and software side. In short, they first ana-

lyzed how SEP physically integrates on iPhone devices, then how

it communicates with the iOS kernel and how its firmware (SEPOS)

works. Finally, they extensively analyzed its security properties,

looking at robustness and attack surface. Their strategy and findings

represented a point of reference for our project.

Shifting the focus to direct testing of embedded devices, other

relevant works are [21, 42]. Both proposed novel techniques for

firmware fuzzing, with solutions circumnavigating the typical prob-

lems of code coverage and throughput with emulation-based solu-

tions. The goal of these researchers is to develop universal tools for

vulnerability research, but their design choices can provide valuable

insights. In another work suggesting the adoption of emulation

combined with fuzzing, Muench et al. presented the common prob-

lems related to fuzzing embedded devices [34]. As mentioned in

Section 4, what the researchers named silent memory corruptions

cannot be detected by our testing architecture, while a set-up based

on partial or full emulation would allow to investigate them too.

Finally, related work on firmware re-hosting includes HALuci-

nator [20] and, with the possibility of integrating an embedded

coverage-guided fuzzer, PartEmu [23].

8 CONCLUSION
In this paper, we provided the first study of the Titan M chip, re-

cently introduced by Google in its Pixel smartphones. Despite being

a key element in the security of these devices, no research is avail-

able on the subject and very little information is publicly available.

We approached the target from different perspectives: we stat-

ically reverse-engineered the firmware, we audited the available

libraries on the Android repositories, and we dynamically examined

its memory layout by exploiting a known vulnerability.

Then, we used the knowledge obtained through our study to

design and implement a structure-aware black-box fuzzer, mutating

valid Protobuf messages to automatically test the firmware. Lever-

aging our fuzzer, we identified several known vulnerabilities in a

recent version of the firmware. Moreover, we discovered a 0-day

vulnerability, which we responsibly disclosed to the vendor.

Our results demonstrate that our approach is effective, and there

are several directions inwhich it can be improved, either via refining

the black-box fuzzer or by changing perspective and exploring

emulation. To foster new research on this subject, we released

all the tools developed for this study at the following URL: https:

//github.com/quarkslab/titanm.

https://github.com/quarkslab/titanm
https://github.com/quarkslab/titanm

ROOTS’21, November 18–19, 2021, Vienna, Austria Damiano Melotti, Maxime Rossi-Bellom, and Andrea Continella

ACKNOWLEDGEMENTS
We would like to thank our reviewers for their valuable comments

and inputs to improve our paper. Moreover, we thank Philippe

Teuwen and the other engineers at Quarkslab, who contributed

to this research by providing useful suggestions and insights. We

acknowledge the support of the Government of Canada’s New

Frontiers in Research Fund (NFRF), NFRFE-2019-00806.

REFERENCES
[1] [n.d.]. Cortex-M3 Devices Generic User Guide. https://developer.arm.

com/documentation/dui0552/a/the-cortex-m3-processor/programmers-

model/processor-mode-and-privilege-levels-for-software-execution.

[2] [n.d.]. Cortex-M3 Devices Generic User Guide. https://developer.arm.

com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-

protection-unit/.

[3] [n.d.]. Frida • A world-class dynamic instrumentation framework. https://www.

frida.re/.

[4] [n.d.]. Ghidra. https://ghidra-sre.org/.

[5] [n.d.]. libprotobuf-mutator. https://github.com/google/libprotobuf-mutator.

[6] [n.d.]. Nanopb - Protocol Buffers for Embedded Systems. https://github.com/

nanopb/nanopb.

[7] [n.d.]. Protocol Buffers. https://developers.google.com/protocol-buffers.

[8] [n.d.]. Secure Enclave overview. https://support.apple.com/en-gb/guide/security/

sec59b0b31ff/web.

[9] 2009. ARM Security Technology Building a Secure System using TrustZone

Technology. Arm white paper (2009), 108.
[10] 2021. Google Tensor debuts on the new Pixel 6 this fall. https://blog.google/

products/pixel/google-tensor-debuts-new-pixel-6-fall/.

[11] AOSP. [n.d.]. A/B (Seamless) System Updates | Android Open Source Project.

https://source.android.com/devices/tech/ota/ab.

[12] AOSP. [n.d.]. Android Security Bulletins. https://source.android.com/security/

bulletin.

[13] AOSP. [n.d.]. CTS Test for Secure Element. https://source.android.com/

compatibility/cts/secure-element.

[14] AOSP. [n.d.]. Gatekeeper. https://source.android.com/security/authentication/

gatekeeper.

[15] AOSP. [n.d.]. Hardware-backed Keystore. https://source.android.com/security/

keystore.

[16] AOSP. 2021. Pixel Update Bulletin—March 2021. https://source.android.com/

security/bulletin/pixel/2021-03-01.

[17] Mohamed Amine Bouazzouni, Emmanuel Conchon, and Fabrice Peyrard. 2018.

Trusted mobile computing: An overview of existing solutions. https://www.

sciencedirect.com/science/article/pii/S0167739X16301510. Future Generation
Computer Systems 80 (March 2018), 596–612. https://doi.org/10.1016/j.future.

2016.05.033

[18] Marcel Busch and Kalle Dirsch. 2020. Finding 1-Day Vulnerabilities in Trusted

Applications using Selective Symbolic Execution. https://www.ndss-symposium.

org/wp-content/uploads/2020/04/bar2020-23014.pdf. In Proceedings 2020 Work-
shop on Binary Analysis Research. Internet Society, San Diego, CA. https:

//doi.org/10.14722/bar.2020.23014

[19] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto. 2020. SoK: Understanding the

Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems. In 2020
IEEE Symposium on Security and Privacy (SP). 1416–1432. https://doi.org/10.1109/
SP40000.2020.00061 ISSN: 2375-1207.

[20] Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David

Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias

Payer. 2020. HALucinator: Firmware Re-hosting Through Abstraction Layer

Emulation. https://www.usenix.org/conference/usenixsecurity20/presentation/

clements. 1201–1218.

[21] Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM: Scalable and Hardware-

independent Firmware Testing via Automatic Peripheral Interface Modeling.

https://www.usenix.org/conference/usenixsecurity20/presentation/feng. 1237–

1254.

[22] Fabian Fleischer, Marcel Busch, and Phillip Kuhrt. 2020. Memory corruption

attacks within Android TEEs: a case study based on OP-TEE. https://doi.org/10.

1145/3407023.3407072. In Proceedings of the 15th International Conference on Avail-
ability, Reliability and Security (ARES ’20). Association for Computing Machinery,

New York, NY, USA, 1–9. https://doi.org/10.1145/3407023.3407072

[23] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen, andMichael

Grace. 2020. PARTEMU: Enabling Dynamic Analysis of Real-World TrustZone

Software Using Emulation. https://www.usenix.org/conference/usenixsecurity20/

presentation/harrison. 789–806.

[24] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory

without accessing them: An experimental study of DRAMdisturbance errors. http:

//ieeexplore.ieee.org/document/6853210/. In 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA). IEEE, Minneapolis, MN, USA, 361–

372. https://doi.org/10.1109/ISCA.2014.6853210

[25] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.

2018. Spectre Attacks: Exploiting Speculative Execution. http://arxiv.org/abs/

1801.01203. arXiv:1801.01203 [cs] (Jan. 2018). arXiv: 1801.01203.
[26] Ben Lapid and Avishai Wool. 2019. Cache-Attacks on the ARM TrustZone

Implementations of AES-256 and AES-256-GCM via GPU-Based Analysis. In

Selected Areas in Cryptography – SAC 2018 (Lecture Notes in Computer Science),
Carlos Cid and Michael J. Jacobson Jr. (Eds.). Springer International Publishing,

Cham, 235–256. https://doi.org/10.1007/978-3-030-10970-7_11

[27] Jessica Lin. 2019. Expanding the Android Security Rewards Program. https:

//security.googleblog.com/2019/11/expanding-android-security-rewards.html.

[28] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.

2018. Meltdown. http://arxiv.org/abs/1801.01207. arXiv:1801.01207 [cs] (Jan. 2018).
arXiv: 1801.01207.

[29] T. Mandt, M. Solnik, and David Wang. 2016. Demystifying the Secure Enclave

Processor. https://www.blackhat.com/us-16/briefings/schedule/#demystifying-

the-secure-enclave-processor-3438.

[30] René Mayrhofer. 2019. Android security trade-offs 1: Root access. https://www.

mayrhofer.eu.org/post/android-tradeoffs-1-rooting/.

[31] René Mayrhofer, Vishwath Mohan, and Stephan Sigg. 2020. Adversary Models for

Mobile Device Authentication. http://arxiv.org/abs/2009.10150. arXiv:2009.10150
[cs] (Sept. 2020). arXiv: 2009.10150.

[32] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich.

2020. The Android Platform Security Model. http://arxiv.org/abs/1904.05572.

arXiv:1904.05572 [cs] (Dec. 2020). arXiv: 1904.05572.
[33] Nagendra Modadugu and Bill Richardson. 2018. Building a Titan: Better security

through a tiny chip. https://security.googleblog.com/2018/10/building-titan-

better-security-through.html.

[34] Marius Muench, Jan Stijohann, Frank Kargl, Aurelien Francillon, and Davide

Balzarotti. 2018. What You Corrupt Is Not What You Crash: Challenges

in Fuzzing Embedded Devices. https://www.ndss-symposium.org/wp-content/

uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf. In Proceedings 2018 Net-
work and Distributed System Security Symposium. Internet Society, San Diego,

CA. https://doi.org/10.14722/ndss.2018.23166

[35] Maxime Peterlin, Joffrey Guilbon, and Alexandre Adamski. 2019. Breaking Sam-

sung’s ARM TrustZone. https://www.blackhat.com/us-19/briefings/schedule/

#breaking-samsungs-arm-trustzone-14932.

[36] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-

Oriented Programming: Systems, Languages, and Applications. https://doi.org/

10.1145/2133375.2133377. ACM Transactions on Information and System Security
15, 1 (March 2012), 2:1–2:34. https://doi.org/10.1145/2133375.2133377

[37] M. Sabt, M. Achemlal, and A. Bouabdallah. 2015. Trusted Execution Environment:

What It is, andWhat It is Not. In 2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 1. 57–64.
https://doi.org/10.1109/Trustcom.2015.357

[38] C. Shepherd, G. Arfaoui, I. Gurulian, R. P. Lee, K. Markantonakis, R. N. Akram, D.

Sauveron, and E. Conchon. 2016. Secure and Trusted Execution: Past, Present,

and Future - A Critical Review in the Context of the Internet of Things and

Cyber-Physical Systems. In 2016 IEEE Trustcom/BigDataSE/ISPA. 168–177. https:

//doi.org/10.1109/TrustCom.2016.0060 ISSN: 2324-9013.

[39] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clé-

mentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano

Giuffrida. 2016. Drammer: Deterministic rowhammer attacks onmobile platforms.

In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[40] Xiaowen Xin. 2018. TitanMmakes Pixel 3 our most secure phone yet. https://blog.

google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/.

[41] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian

Holler. 2021. The Fuzzing Book. CISPA Helmholtz Center for Information Security.

https://www.fuzzingbook.org/ Retrieved 2021-03-12 11:41:11+01:00.

[42] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu,

and Limin Sun. 2019. FIRM-AFL: High-Throughput Greybox Fuzzing of

IoT Firmware via Augmented Process Emulation. https://www.usenix.org/

conference/usenixsecurity19/presentation/zheng. 1099–1114.

[43] Zynamics. [n.d.]. BinDiff. https://www.zynamics.com/bindiff.html.

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/processor-mode-and-privilege-levels-for-software-execution
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/processor-mode-and-privilege-levels-for-software-execution
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/processor-mode-and-privilege-levels-for-software-execution
https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/
https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/
https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/
https://www.frida.re/
https://www.frida.re/
https://ghidra-sre.org/
https://github.com/google/libprotobuf-mutator
https://github.com/nanopb/nanopb
https://github.com/nanopb/nanopb
https://developers.google.com/protocol-buffers
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web
https://blog.google/products/pixel/google-tensor-debuts-new-pixel-6-fall/
https://blog.google/products/pixel/google-tensor-debuts-new-pixel-6-fall/
https://source.android.com/devices/tech/ota/ab
https://source.android.com/security/bulletin
https://source.android.com/security/bulletin
https://source.android.com/compatibility/cts/secure-element
https://source.android.com/compatibility/cts/secure-element
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://source.android.com/security/bulletin/pixel/2021-03-01
https://source.android.com/security/bulletin/pixel/2021-03-01
https://www.sciencedirect.com/science/article/pii/S0167739X16301510
https://www.sciencedirect.com/science/article/pii/S0167739X16301510
https://doi.org/10.1016/j.future.2016.05.033
https://doi.org/10.1016/j.future.2016.05.033
https://www.ndss-symposium.org/wp-content/uploads/2020/04/bar2020-23014.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/04/bar2020-23014.pdf
https://doi.org/10.14722/bar.2020.23014
https://doi.org/10.14722/bar.2020.23014
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1109/SP40000.2020.00061
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://doi.org/10.1145/3407023.3407072
https://doi.org/10.1145/3407023.3407072
https://doi.org/10.1145/3407023.3407072
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
http://ieeexplore.ieee.org/document/6853210/
http://ieeexplore.ieee.org/document/6853210/
https://doi.org/10.1109/ISCA.2014.6853210
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://doi.org/10.1007/978-3-030-10970-7_11
https://security.googleblog.com/2019/11/expanding-android-security-rewards.html
https://security.googleblog.com/2019/11/expanding-android-security-rewards.html
http://arxiv.org/abs/1801.01207
https://www.blackhat.com/us-16/briefings/schedule/#demystifying-the-secure-enclave-processor-3438
https://www.blackhat.com/us-16/briefings/schedule/#demystifying-the-secure-enclave-processor-3438
https://www.mayrhofer.eu.org/post/android-tradeoffs-1-rooting/
https://www.mayrhofer.eu.org/post/android-tradeoffs-1-rooting/
http://arxiv.org/abs/2009.10150
http://arxiv.org/abs/1904.05572
https://security.googleblog.com/2018/10/building-titan-better-security-through.html
https://security.googleblog.com/2018/10/building-titan-better-security-through.html
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://doi.org/10.14722/ndss.2018.23166
https://www.blackhat.com/us-19/briefings/schedule/#breaking-samsungs-arm-trustzone-14932
https://www.blackhat.com/us-19/briefings/schedule/#breaking-samsungs-arm-trustzone-14932
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/TrustCom.2016.0060
https://doi.org/10.1109/TrustCom.2016.0060
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://www.fuzzingbook.org/
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.zynamics.com/bindiff.html

	Abstract
	1 Introduction
	2 Background
	3 Reverse Engineering
	3.1 Firmware Internals
	3.2 Communication with Android
	3.3 Security Features
	3.4 Known Vulnerability Exploitation

	4 Fuzz Testing
	5 Experimental Evaluation
	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	References

