
GroupDroid: Automatically Grouping Mobile Malware by
Extracting Code Similarities

Niccolò Marastoni
Università di Verona

niccolo.marastoni@univr.it

Andrea Continella
Politecnico di Milano

andrea.continella@polimi.it

Davide Quarta
Politecnico di Milano

davide.quarta@polimi.it

Stefano Zanero
Politecnico di Milano

stefano.zanero@polimi.it

Mila Dalla Preda
Università di Verona

mila.dallapreda@univr.it

ABSTRACT

As shown in previous work, malware authors often reuse portions
of code in the development of their samples. Especially in the mo-
bile scenario, there exists a phenomena, called piggybacking, that
describes the act of embedding malicious code inside benign apps.
In this paper, we leverage such observations to analyze mobile mal-
ware by looking at its similarities. In practice, we propose a novel
approach that identifies and extracts code similarities in mobile
apps. Our approach is based on static analysis and works by com-
puting the Control Flow Graph of each method and encoding it
in a feature vector used to measure similarities. We implemented
our approach in a tool, GroupDroid, able to group mobile apps
together according to their code similarities. Armed with Group-
Droid, we then analyzed modern mobile malware samples. Our
experiments show that GroupDroid is able to correctly and accu-
rately distinguish different malware variants, and to provide useful
and detailed information about the similar portions of malicious
code.

CCS CONCEPTS

• Security and privacy→ Malware and its mitigation;

KEYWORDS

Mobile, Malware, Similarity
ACM Reference Format:

Niccolò Marastoni, Andrea Continella, Davide Quarta, Stefano Zanero,
and Mila Dalla Preda. 2017. GroupDroid: Automatically Grouping Mobile
Malware by Extracting Code Similarities. In SSPREW-7 : 7th Software Secu-
rity, Protection, and Reverse Engineering / Software Security and Protection
Workshop , December 4–5, 2017, San Juan, PR, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3151137.3151138

1 INTRODUCTION

The great diffusion and usage of smartphones raised, in the last
years, new security and privacy issues. In fact, these devices are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSPREW-7 , December 4–5, 2017, San Juan, PR, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5387-8/17/12. . . $15.00
https://doi.org/10.1145/3151137.3151138

particularly attractive for cybercriminals, since compromising them
can be extremely lucrative, e.g., allowing attackers to defeat two
factor authentication, or leaking sensitive information. As a conse-
quence, we observed an increase in the development and diffusion
of mobile malware, mainly targeting the Android platform. Android
is nowadays the most spread mobile operating system. According
to Statista [31], in the first quarter of 2017 87% of smartphone sales
were devices running Android.

In 2016, Kaspersky Lab detected 8,526,221 malicious installation
packages [21]. In particular, they observed a great increase in the
diffusion of mobile ransomware, identifying 261,214 new mobile
ransomware samples. Zhou et al. [39] studied the overall health
of existing Android Markets, including both official and unofficial
(third-party) ones, showing that most of malware is present in
alternative markets. However, despite Google’s effort (which uses
a tool called Bouncer [28]), many malicious apps managed to avoid
detection and were published on the Google Play Store [1].

Researchers studied this emerging phenomena and proposed
solutions to mitigate security problems, such as malware detec-
tion [2, 5, 26], privacy leak detection [6, 11, 17, 29, 34], or mitigation
of specific mobile attacks [18, 24].

From a different point of view, Lindorfer et al. [23] studied the
evolution of Windows malware demonstrating that malware au-
thors share their malicious code across different malware variants,
and constantly update their samples to release new versions. Sim-
ilarly, Android malware authors are known for leveraging tech-
niques like repackaging and piggybacking, in which malicious code
is embedded into benign apps [38].

Leveraging such observations, previouswork proposed approaches
to identify app similarities in order to perform malware classifica-
tion [15, 35] or, for instance, detect vulnerable apps [20]. However,
such approaches provide just a “black-box” classification, without
providing any details as to why two or more apps belong to the
same class. This has also been proved in [14], where authors showed
that mobile malware detectors apply black-box signatures that do
not reliably give insight about the malicious activity.

In this paper, we propose a novel technique to identify code
similarities among Android apps, recognizing and extracting sim-
ilar code that produces similar behaviors. Our approach is based
on static analysis and works at the method level. Specifically, we
extract the Control Flow Graph (CFG) of every method and encode
each CFG in a vector of features that we use to measure the similar-
ity. Chen et al. introduced the concept of 3D-CFG and its relative
centroid to build a scalable method for app clone detection in [9],

https://doi.org/10.1145/3151137.3151138
https://doi.org/10.1145/3151137.3151138

SSPREW-7 , December 4–5, 2017, San Juan, PR, USA N. Marastoni et al.

focusing on applications that share most of the code, or at least the
core functionality. One of their main motivations for working on
clone detection is the fact that malware prefers to use app clones as
“carriers” for propagation, while our focus is almost the opposite.
We look for similarities in potentially small portions of malicious
code, those that are deemed interesting for our particular analysis.

We implemented our approach in a tool called GroupDroid
able to group Android malware samples on the basis of their code
similarities and to extract the portions of similar code, providing
useful and detailed feedback of the classification and helping in the
reverse engineering process. We evaluated GroupDroid against
4,211 malicious Android apps, showing that it is able to successfully
identify different families. Our experiments showed that Group-
Droid is not only able to group together malware samples of the
same family, but it can also distinguish slightly different variants
by identifying differences in the similarities. An example of this is
clearly visible in Figure 1, where the methods only differ in their
names, package names and some specific strings (like url that is
transformed in erwдerwд).

In summary, we make the following contributions:
• We propose a static analysis-based approach to identify syn-
tactic similarities between Android apps and extract portions
of code that produce similar behaviors.
• We implement our approach in a tool, GroupDroid, that is
able to find similarities in malicious Android apps and group
them together according to such similarities.
• We evaluated GroupDroid on a dataset of 4,211 Android
malware samples. Then, we present some case studies that
show how mobile malware authors share and reuse their
malicious code across different variants.

2 BACKGROUND AND MOTIVATION

Malware lives in a complex ecosystem that, similarly to an indus-
try environment, includes malware developers, managers, mainte-
nance, and business strategies. This ecosystem is, of course, stim-
ulated by the financial incentives that revolve around it. Com-
mon trends in the mobile scenario include: stealing and selling
user information, stealing user credentials, premium-rate calls,
SMS spam, ransoms, advertising click frauds, and in-app billing
frauds. Armin [4] studied the mobile underground market finding
an alive and thriving ecosystem that benefits from the existence
of an established modus operandi for desktop malware, which is
well-structured and successful. Such amarket is based on a crime-as-
a-service model, in which resources, such as customizable malware,
are sold and rented online. For instance, a Trojan called “Exo An-
droid Bot” was heavily advertised in forums in 2016. For $400 per
week or $3,000 per year the author promised Android malware that
could intercept SMS, use screen overlays, and had 24/7 support [33].
Unfortunately, sometimes malicious apps manage to evade detec-
tion and appear on official stores. For example, in February 2017,
an Android.Fakebank.B variant masked as a weather app called
“Good Weather” was published on the official Google Play Store
and was downloaded by approximately 5,000 users [33].

Motivation: One of the distinctive aspects of malware, especially
on mobile, is its evident need to fit in among legitimate apps, to
entice the user and spread faster. Since its appearance needs to

resemble goodware, a big part of the app is dedicated to behaviors
that aren’t malicious at all, and often the benevolent part of the app
varies in different samples of the same malware family. A malware
family is thus defined by the only component that is maintained
constant among every sample: the malicious payload (Figure 2).
This phenomena, known as piggybacking, in which cybercriminals
embed malicious code into benign apps, has been observed and
studied by researchers in previous works [22, 36, 37]. Moreover, as
we previously described, malware authors re-use (part of) their ma-
licious code across different malware versions and variants, which
are constantly released on the underground market.

On the base of such observations, if we find a good and effi-
cient way to analyze code similarities between many apps, we can
potentially isolate the malicious behaviors shared among the differ-
ent malware samples, and group apps together according to these
similarities.

Previous works proposed approaches to classifying apps by look-
ing at their similarities [15, 20, 35]. However all these approaches
mainly provide black-box tools, which do not generate detailed
information about the behaviors the apps share. Instead, we aim
at proposing a novel approach that allows to obtain practical and
detailed feedback of the classification. In practice, our approach
identifies and extracts the similar portions of code that cause two
or more apps to be grouped together.

3 APPROACH AND METHODOLOGY

GroupDroid at its core takes in input smali files from Android
apps and filters the individual methods according to some fixed
thresholds that allow us to be selective in regards to the behaviours
we want to observe. Then the code is parsed to extract some static
features, 3D-CFG centroids and API vectors, which will then be
used to compare apps at the method level, to check for similarities.
When GroupDroid completes all the comparisons, it then groups
the apps together according to how much of the code they share.
In the next sections, we describe the phases of the approach of
GroupDroid, following the workflow depicted in Figure 3.

3.1 Filter

As a first step of our approach, apps are unpacked using apktool and
the smali files are parsed to extract methods. The filtering phase
considers some thresholds that are variable and can be tuned in the
settinдs section.
The first one is themin_method_size , which counts the minimum
number of instructions in a method for it to be extracted. This tells
the parser to ignore those methods that do not contain enough
statements.
The filter can be adjusted at each analysis, but it’s usually set at
6 to weed out some methods that are prevalent in every Android
app, mainly init() type of methods. These do not have any control
flow information but they usually just initiate a couple of variables
and invoke one additional method, so they become the main source
for false positives and usually make the results of our analysis less
interesting.

The second filter checks if amethod invokes any of theRisky APIs .
If it does not, we do not consider it since it cannot possibly have
any interesting behavior. Risky APIs is just a collection of all the

Automatically Grouping Mobile Malware by Extracting Code Similarities SSPREW-7 , December 4–5, 2017, San Juan, PR, USA

Figure 1: An example of GroupDroid’s main output

Figure 2: Isolating Malicious Behaviors

APIs offered to Android developers to interact with the phone, and
they range wildly between APIs that allow apps to write SMS and
others that grant access to the phone’s filesystem. With the way
the Android OS is structured, apps just do not have any way to do
anything harmful without using these APIs.

The API filter also allows us to choose which APIs to focus
on during analysis, making it easier to spot partial similarities in
different samples. We collected the Risky APIs from various sources
on the net and divided them in classes for different types of malware.
For example, spyware samples will usually use some of these APIs:
android.telephony.TelephonyManager
android.provider.Contacts
java.net.ServerSocket
org.apache.http.impl.client.DefaultHttpClient

3.2 Feature Extraction

We consider similarity at the method level, so we can encode every
method and then compare it to others.
Since our similarity computation needs to be both fast and resilient
to code transformations (to a certain degree), we decided to first
consider the structure of the code. We extract the CFG of every
method and encode each CFG in a vector of features that we use
for the final similarity measure.

The first 4 features are the 3D-CFG’s weighted centroid of the
method, as first defined in [9].
The idea behind 3D-CFG centroids is borrowed directly from physics,
to be more specific it’s a reinterpretation of the center o f mass of
an ensemble of rigid bodies.

3D-CFG. Each method in a sample app gets transformed in its CFG,
which represents the rigid structure, and every node (basic block)
in the CFG is treated like an object with mass, connected to the
other objects via weightless sticks (the edges of the CFG).
At this point an end node will be added, and every basic block with
a return statement will naturally flow into it, providing a single
exit node that will have its weight set to 0.

Before assigning any mass to the nodes of the CFG, this needs
to get transformed even further to make it fit into a 3D space.
First, each node p needs to have < xp ,yp , zp , > coordinates, where:
• xp = sequence number
The choice of the sequence number depends on the order in
which every basic block in the CFG will be executed. This
is not particularly easy to judge with static analysis, but
the goal of the 3D-CFG conversion is to provide a 1-to-1
conversion between code and 3D-CFG, thus it can rely on
simple heuristics that will assure the same conversion every
time copies of the same method will be fed to the algorithm.
If a branch node has sequence number n, the first node in
the branch with more nodes will have n + 1.
• yp = number of outgoing edges

• zp = loop depth
The nesting level of the basic block.

3D-CFG centroids. Once the basic blocks are successfully con-
verted into nodes in the CFG, every node p is then connected to its
successor q via an edge e(p,q) according to the original structure
of the CFG.
The weight wp of every node p is given by the number of state-
ments (instructions) in it. We count every instruction apart from
nop, since we don’t want to be fooled by simple padding.
A centroid is a vector < cx , cy , cz ,w > where:

cx =

∑
e(p,q)∈3D−CFG (wpxp +wqxq)

w
(1)

cy =

∑
e(p,q)∈3D−CFG (wpyp +wqyq)

w
(2)

cz =

∑
e(p,q)∈3D−CFG (wpzp +wqzq)

w
(3)

w =
∑

e(p,q)∈3D−CFG
(wp +wq) (4)

Modified Centroid. Because of the nature of methods in Android
apps and their reliance on invocations to the framework APIs, a

SSPREW-7 , December 4–5, 2017, San Juan, PR, USA N. Marastoni et al.

Figure 3: Workflow of GroupDroid.

second type of centroid is introduced in [27], where the weights of
each node are the sum of the number of statements and the number
of invocations found in the basic block.
This allows for better distinction between possibly cloned methods,
enhancing the underlying differences, and does not impact the
complexity of the calculation (both centroids can be calculated at
the same time with no added overhead).

Hence,w ′ = w+ # of invocations, and c ′will be our newweighted
centroid, with the same process applied above.

Centroid Difference Degree. At this point the methods of our
Android apps have been reduced to simple 3D vectors (technically
4D, since it’s 3 dimensions plus the weight) so now we can define a
simple distance measure between the centroids.

CDD(−→c1 ,−→c2) =max(
|c1x − c2x |
c1x + c2x

,
|c1y − c2y |
c1y + c2y

,
|c1z − c2z |
c1z + c2z

,
|w1 −w2 |
w1 +w2

)

(5)
The first 4 features are the modified centroid, and as we experi-
mented with it, we found out it has way better performances than
the normal one or a combination of the two.

The 3D-CFG centroid is a structural feature, and not a very
precise one (since the centroid only keeps part of the structural
information of the CFG [9]), so it forgets a lot of what happens in
the methods. This, coupled with android method’s tendency to be
rather simple, gives rise to a lot of false positives.
In the original paper, the authors added a vector of statement types
(couting how many different types of statements were found, dec-
larations, assignments, invocations etc.) to face this problem, but
after extensive testing with our datasets it became clear that it did
not solve most of the false positives, if any.

+Our proposed solution is to look at the APIs that are called
during the method run: if two pieces of code are similar, they need
to exhibit some of the same behaviors. To check this, we extract the
API invocations during the first parse of the smali code, annotating
every method with a 5th feature.

API Vectors. This 5th feature in our vector is a number between 0
and (223 − 1), it’s a binary encoding of the APIs (APIBool). We iso-
lated 23 Risky APIs mostly from literature and our own experience,
and stored them in a list. Every time a method invokes an API in
the list, the 5th feature (which is initialized to 0) will be added to

2a (where a is the index of the API). So an invocation to the first
API will add 1 (20), to the 4th will add 8 (23) and so on. This is
done mostly to provide a new feature that does not slow down the
extraction process any further and that still allows us to check in
O(1) the new property.

During the extraction of the 5th feature we also save a vector
(APIVector) where each index represents how many times a given
API is invoked in the method’s body. Example: if we only consider
4 APIs, NFC, TELEPHONY, NET and CRYPTO and the methods
makes 3 calls to methods related to NET and one to a method related
to TELEPHONY, then the APIVector will be [0, 1, 2, 0].

This is our last group of features, at this time it’s a vector of up
to 23 elements with each element being an integer in the range 0+,
and it will be used eventually in the very last step of our similarity
function. The vector can of course be smaller if fewer APIs are
selected during the filtering phase.

3.3 Code Similarity

This is the algorithm for our code similarity measure, given 2 meth-
odsm1 andm2:
s(m1,m2) = CDD(m1.centroid,m2.centroid) < cThreshold
∧ BVE(m1.APIBool ,m2.APIBool)
∧ VDD(m1.APIVector ,m2.APIVector) < vThreshold

Where CDD (the Centroid Difference Degree) is a very fast op-
eration that lets us filter methods that share at least some common
structure. It returns a float value between 0 and 1.0, where 0 means
complete similarity and 1.0 no similarity at all (it’s a weighted dis-
tance). The threshold for the final similarity can be changed at will,
but it’s usually set to 0.4. This value is the result of many experi-
ments and lets the search space reduction algorithm work (it would
become ineffective at 1.0) while allowing structural dissimilarities
introduced by code transformations. The next steps of the algo-
rithm will eventually catch any discrepancies produced by this lax
approach.

BVE is the Boolean Vector Evaluation:

BVE(bv1,bv2) = bv1&bv2 (6)

This is an O(1) function, incredibly simple and designed to act as a
rough filter to avoid analyzing methods that do not share any API
invocation. As previously explained, our 5th feature is a number

Automatically Grouping Mobile Malware by Extracting Code Similarities SSPREW-7 , December 4–5, 2017, San Juan, PR, USA

between 0 and 223−1 that is mined without any additional overhead
during the parsing of the method and it encodes succinctly which
APIs are called in the body of the method.
Consider this practical example with methods q.run() and i.run(),
extracted from the debug output of GroupDroid:
FAILED API CHECK:
(4.384615384615385, 1.3205128205128205,
0.08974358974358974, 78)
32, [0, 0, 0, 0, 0, 3], 'q.smali', 'run()V'
AND
(3.375, 1.5416666666666667, 0.16666666666666666, 72)
18, [0, 1, 0, 0, 2, 0], 'i.smali', 'run()V'
MDD = 0.168574812475

The first 4 numbers between parenthesis are the 3D-CFG centroid
of the method, while the first number in the next line is our 5th
feature. Methods q.run() and i .run() passed the CDD test, meaning
their structure is fairly similar, or the threshold was set too high (in
fact it was set to 0.2). Method q.run() calls an API that is located
at position 5 in the risky APIs vector, so its binary feature is the
number 100000 (1 ∗ 25 = 32), while method i .run() calls two APIs
that can be found at position 1 and 4, producing the binary feature
010010 (1 ∗ 24 + 1 ∗ 21 = 18).
At this point the BVE function simply applies a bitwise AND op-
erator to the binary features and discovers that they do not share
any API call (32&18 = 0), meaning that the structural similarity
resulted in a false positive. Hence, we can declare the methods not
similar immediately without further computations.

If theBVE function returns a TRUE value (which is any non-zero
number), then the last function is applied to the remaining features.
The VDD is the API Vector Distance Degree:
av1 = [v1,1...v1,23]
av2 = [v2,1...v2,23]

VVD(av1,av2) =max

{ |v1,i −v2,i |
|v1,i +v2,i |

|i ∈ [0, 22]
}

(7)

This is very similar to the CDD function and again outputs a value
between 0 and 1.0, where 0 is an exact match between the API
vectors, while 1.0 this time means that at least one of the elements
in one vector did not have a match in the other. We use this function
to allow for future relaxing of the API vector threshold, but for now
it’s set at a firm 0 (meaning we want an exact match all the time).

If all 3 the functions return True then the two methods are
deemed similar.

3.4 App Similarity

The app similarity score is calculated as the ratio between the
number of shared methods and the size of the first app, calculated
as number of methods.
The reason the similarity is asymmetrical is to account for the
difference in size between different apps, if an app shares 20% of
its code with another, it’s not always a given that the second one
shares 20% of its code with the first.

score(app1, app2) =
| {(m1,m2) |m1 ==m2 ∧m1 ∈ app1 ∧m2 ∈ app2 } |

| {m1 |m1 ∈ app1 } |
(8)

Two apps are considered not similar at all when their score is exactly
0, which means that they share no common method. Two apps are

for sample ∈ analyzed_apps do
for group ∈ groupset do

score ← similarity_score(group, sample)
if score > threshold then

group ← group∪sample
else

new group
group ← sample
groupset ← groupset∪group

endif
endfor

endfor

Figure 4: Grouping algorithm.

considered equal when their score is 1, and that only happens when
every method from the first app has a match in the other app.

3.5 Grouping

The grouping phase of GroupDroid consists of a general clustering
algorithm that takes into account the app similarity score as a
distance measure.
It starts by iterating on each analyzed app, creating a cluster for
the first one and then adding to it all other apps that have a good
similarity score, taking into account the asymmetry of the score
we always check for the best one of the pair. The similarity score
threshold is one of the parameters that we can play with and it’s
usually set at 1.0 if we only want to consider groups of apps that
share 100% of the code we care about. This particular value has
proved to be very valuable in our analysis, as it gives more concise
results when few APIs are filtered, but it can also severely impair
the grouping accuracy when we are analyzing for more APIs. For
example we found the samples in case study 9 after lowering the
grouping threshold and allowing the samples to share only part of
the code.

Figure 4 shows the pseudocode of our grouping algorithm.

4 SYSTEM DETAILS

4.1 Search Space Reduction

To analyze an entire dataset, GroupDroid needs to encode every
method of every sample and compare it to the others. Numerically,
this means that if the dataset containsnmethods, there will beO(n2)
comparisons, which becomes a problem very fast when analyzing
big datasets.

For example, the GENOME dataset (which isn’t particularly big)
has more than 1,000 apps, and each one of them has up to 3,000
methods in it (mostly some members of the DroidKungFu family),
which totals at about 3∗106 methods with 9∗1012 comparisons. Our
algorithm can compute 105 comparisons per second on average, so
that would take close to 9 ∗ 107 seconds (slightly less than 3 years).
Of course this is not an acceptable running time for any kind of
analysis, thus it became necessary to restrict the search space.

Since the first step of the algorithm considers structural similarity
between methods by converting the CFG into a 3-dimensional
vector (4-dimensional if we consider the weight), restricting the
search space literally means that we may consider only the regions

SSPREW-7 , December 4–5, 2017, San Juan, PR, USA N. Marastoni et al.

of the 4-dimensional space that contain centroids closer to the one
in input.

The first step of the dimensionality reduction occurs during the
preliminary phase, when every method is coded in its centroid,
GroupDroid updates a nested dictionary-like data structure that
will act as a hash-table to allow for fast searching.
The dictionary is thus updated:
c = (x, y, z, w)

update_centroid_dict(Centroid c):
dict[floor(x)][floor(y)][floor(z)][w].append(c)

Thisway a centroid c with the coordinates [1.342,3.45,8.01,12]
will be added to a list of other centroids in dict[1][3][8][12].

The algorithm to search for a matching centroid now is pretty
straightforward, we just need to calculate a valid range of coordi-
nates to check, and then look into their respective lists. The range
of coordinates is calculated using the CDD function. For example,
given the previous centroid c in input and the standard thresholds
for GroupDroid, its matching centroids will be searched in the
following ranges: x = (1, 1),y = (2, 4), z = (6, 10),w = (9, 15). This
gives us 48 possible lists of centroids, with most of them realistically
being empty.

For a more practical example we’ll run our algorithm on the first
method of the first sample in the GENOME dataset: 86 actual MDD
checks and only 9 API checks, in a dataset with about 70k methods.
Normally checking every single method in the dataset against the
others would take more than 13 hours, this way it could take 18
seconds, assuming that the search space was equally distributed (a
pretty bold and unrealistic assumption).

Since there isn’t any theoretical reason why methods should
stack up in a particular spot, we ran some tests and the worst
performance by far was in a method that had to be checked against
290 other methods. With this experimental worst case in mind
(assuming that every single one of the methods had to find 290
suitable doubles), the run time of our algorithm would still take a
little more than 3 minutes. Compared to 13 hours it’s still a pretty
big improvement.

4.2 Implementation

We implemented GroupDroid in about 3K lines of Python as a web
application, to make it easier to deploy on remote servers. What
follows is a simple description of the implementation concerning
its core elements.

For the server side aspects of GroupDroid we used the web
framework Flask, which allows for faster initial development and
launch on a local machine. Different technologies will be considered
for an eventual future production deployment.

The system works by leveraging apktool to extract the apps and
translate the dex files into smali, a human readable format that
is produced by the disassembler baksmali. Then a simple parser
scans through the smali files and generates the features needed
for the similarity measure. Each method is transformed into its
respective CFG (as better explained in Section 3.2) and saved in a
dictionary that will remain in RAM for the duration of the analysis.
We used to store everything on disk and then call it back whenever
needed but it created unnecessary bottlenecks, now the only disk

I/O operations happen on server start up and when the analysis is
over. This means that the dictionary containing the features and all
the reports are saved on disk in plain text using the Python library
Pickle, so that GroupDroid can reload them in memory at each
startup.

5 EXPERIMENTAL EVALUATION

In the next sections, we describe our datasets and the experiments
we performed to evaluate GroupDroid. More precisely, we first
provide the results of the analysis we performed using GroupDroid.
To evaluate the grouping accuracy, we leveraged AVClass [30],
a malware labeling tool that determines the most likely family
of a given sample by clustering the AV labels obtained through
VirusTotal. Then, we present some interesting case studies that
show howmalware samples reuse malicious code. Finally, we assess
the runtime performance of our tool.

5.1 Datasets

We used four different datasets for our evaluation. First, we got
access to 675 ransomware samples from the Heldroid [3] dataset
(Dataset_1). Then, between July and August 2017, we used the
VirusTotal Intelligence API to obtain two datasets: (1) the 500 most
recent Android ransomware labeled as ransomware by at least
5 AVs (Dataset_2); (2) the 1,000 most recent generic malware la-
beled as malicious by at least 5 AVs (Dataset_3). Finally, we got
access to data from AndroTotal [25]. Specifically, we obtained 2,036
apps labeled as malicious by at least 25% of the AVs in AndroTotal
(Dataset_4).

In summary, our datasets total 4,211 malicious apps.

5.2 Grouping Results

Dataset_1 + Dataset_2. For this study we analyzed a dataset of
1,175 ransomware. The goal of the analysis was to group these
samples by highlighting their shared code.

The biggest group in the dataset turned out to be 242 samples,
all of them sharing the same methods to encrypt and decrypt files.
This group goes well beyond code reuse, as all of them have the
same structure and contain only one package with always exactly 22
smali files. The only difference is in the package name and in the file
names, as all of the samples seem to contain different permutations
of random strings.

The methods isolated as most relevant, using the API filter func-
tion, have been the encrypt(), decrypt() and init(), which
contain all the code necessary to perform the main action of ran-
somware.

The second group has 94 members and is another case of extreme
code reuse, where most of the samples contain exactly the same
files, this time even with the same names and with only a couple
different packages for most of it. GroupDroid was able to identify
code reuse even among those few samples that were not exactly
cloned, and again the only transformation done to the samples were
different names for the packages and the smali files, but this time
changing the whole structure of the application and adding a lot to
it.
Table 1 shows how many different labels were applied to this par-
ticular group by AVclass.

Automatically Grouping Mobile Malware by Extracting Code Similarities SSPREW-7 , December 4–5, 2017, San Juan, PR, USA

All in all GroupDroid helped isolate at least 18 groups of apps
in the dataset that share their core code. In Table 2, we show 12
interesting ones and their relationship with AVClass classes. From
top to bottom it’s easy to see that what AVClass labels as koler
or locker are actually 9 different groups of applications, which
probably exhibit the same behaviour (theyre all ransomware after-
all) but do not really share enough code to be considered similar
by GroupDroid. For example, all the samples in G1 contain the
methods init() encrypt() and decrypt() and they try to hide
them in randomly named smali files.

Another interesting observation can be done by looking at the ta-
ble from left to right on G11 and G11, the families simplocker and
slocker could be easily merged, and it could explain the similarity
of their name. The same observation can be made by the samples in
the families svpeng and crosate, that were both grouped together
by GroupDroid on G3. Manual analysis has confirmed that indeed
all these samples belong together.

This means that GroupDroid gave a more accurate representa-
tion of the dataset as a whole, giving more detailed granularity to
the generic labels locker and koler while also grouping together
unnecessary labels. This is simpler to see when looking at the
graphs in Figure 5 and 6.

One of the best results was given by the second biggest group
isolated by GroupDroid, all of which was comprised of samples
of ransomware downloaded between july and August 2017. All 94
of them were correctly grouped together by GroupDroid (they’re
almost identical clones) but AVClass gives 5 different labels (jisut,
slocker, congur, lockscreen, locker). It’s very likely that labeling
recently found malware is less consistent among AVs, as we can
see the opposite trend during our evaluation of the tool with the
GENOME dataset. Since the dataset has been around for so long
the AVs have reached a consensus and they are able to consistently
choose the right labels for every sample contained.

C congur jisut lockscreen slocker locker
G1 25 42 7 19 1

Table 1: AVclass classification of group 2 in Dataset_1 +

Dataset_2

C koler locker simplocker slocker crosate svpeng
G1 242 0 0 0 0 0
G2 69 0 0 0 0 0
G3 0 0 0 0 22 39
G4 40 0 0 0 0 0
G5 0 34 0 2 0 0
G6 27 0 0 0 0 0
G7 0 25 0 0 0 0
G8 0 23 0 0 0 0
G9 0 22 0 0 0 0
G10 0 0 18 2 0 0
G11 0 0 7 13 0 0
G12 0 18 0 2 0 0

Table 2: Classification of Dataset_1 +Dataset_2. On the x axis

we have the classification by AVClass, while GroupDroid’s

grouping is on the y axis.

Dataset_3. Another dataset we worked on was downloaded from
VirusTotal and comprises 1000 samples. GroupDroid identified
about 20 unique groups when analyzing for TELEPHONY related
behaviours.
In Table 3, we highlight only some of the most interesting groups.
Looking at this table it’s clear that the family SmsReg is actually di-
vided in 4 groups and the families SmsThief and smsforw contain
2 distinct groups each, again making a case for a very weak ground
truth. There is also a very faint hint at the fact that SmsThief and
SmsSpy could be merged, but it’s much clearer when changing the
filter a little, looking at cryptographic APIs, in Table 4. The most
interesting result from this analysis comes from group 2, where 8
samples were classified by AVClass as lockscreen and 20 as sin-
gleton. This means that AVClass did not have a label for them,
so they are 20 unseen samples that have been correctly grouped
together by GroupDroid as members of the family lockscreen.
Also a good indication that the previous classification for G2 (all
members of the family SmsReg, in table 3) was correct, we now
find the same exact samples in G3.

Dataset_4. Our last analysis is a dataset consisting of 1,790 sam-
ples, all downloaded from AndroTotal.
Here are some interesting groups of malware with telephony-
related behaviours: The classification in this case seems to be much
more consistent between GroupDroid and AVClass and the reason
could be that these families have been around for a while, as they
appear in the original GENOME dataset (apart from Sandr) so they
have been thoroughly studied and analized.
It’s also interesting to note that GroupDroid divided in 2 different
groups what AVClass thought was only the family DroidDream,
so we looked into the samples themselves, being aided by Group-
Droid’s handy method filtering tool. We noticed that, while all
of the samples in the 2 groups mined the IMEI, IMSI and device
ID from the unsuspecting user, they went about it in a completely
different way: the samples in G4 divided each action in 3 different
methods (Figure 7), while those in G5 did it in a single method

C SmsThief SmsReg SmsSpy smsforw smsPay
G1 25 0 1 0 0
G2 0 22 0 0 1
G3 0 18 0 0 1
G4 0 4 0 0 2
G5 0 8 0 0 0
G6 0 0 0 9 0
G7 7 0 0 0 0
G8 0 0 0 0 0
G9 0 0 0 6 0

Table 3: Classification of Dataset_3 (AVClass on the x axis,

GroupDroid on the y axis).

C SmsThief SmsReg SmsSpy lockscreen singleton
G1 32 0 11 0 0
G2 0 0 0 8 20
G3 0 22 0 0 0

Table 4: Dataset_3 with Crypto APIs (AVClass on the x axis,

GroupDroid on the y axis).

SSPREW-7 , December 4–5, 2017, San Juan, PR, USA N. Marastoni et al.

Figure 5: AVClass labels (darker shade) are more generic, GroupDroid helps refine the results by subdividing them.

Figure 6: GroupDroid helps grouping together samples that were divided by AVClass.

C BaseBridge BeanBot SMSpy DroidDream Sandr
G1 65 0 0 0 0
G2 0 49 0 0 0
G3 0 0 37 0 0
G4 0 0 0 36 0
G5 0 0 0 33 0
G6 0 0 0 0 31

Table 5: Classification of Dataset_4 (AVClass on the x axis,

GroupDroid on the y axis).

(Figure 8).

But this is not the only difference, the samples in G4 can send
SMS messages to steal the user’s IDs, while those in G5 do not have
this capability and just send everything through the net.
So in a way all 69 samples have some consistent behaviours, but
they implement them in a much different way.

5.3 Grouping Accuracy

GroupDroid was first tested using the very well known GENOME
dataset [38]. It contains 1200 malware samples of Android malware,
categorized in 49 families, all of which were collected between 2010
and 2011.

This dataset has already been the subject of many studies, all of
which have expanded the information gathered on the families and
addressed the various problems that can be solved by classifying
malware correctly ([2], [35], [7]). Since the dataset is already divided
into malware families and it has a huge corpora of studies on it,
this means that GroupDroid’s accuracy can be assessed easily.

The fact that the samples in this dataset have been gathered in
2010 and 2011 implies that they should not perfectly reflect modern
malware, but the dataset overall seems like a suitable candidate for
initial testing.

The dataset contains 49 families, but 16 of these only contain
one sample each. Since GroupDroid can group samples together
with regard to their similarity, these 16 families cannot possibly be

Automatically Grouping Mobile Malware by Extracting Code Similarities SSPREW-7 , December 4–5, 2017, San Juan, PR, USA

Figure 7: Method filtering tool, showing methods that extract IMEI, IMSI and ID in G4

Figure 8: Method filtering tool, showing a method that extracts IMEI, IMSI and ID in G5

Precision Recall F1_S
CCD 0.6606 0.8909 0.7587

CCD + BVE 0.7008 0.9022 0.7889
CCD + BVE + VDD 0.7511 0.9021 0.8197

Table 6: Grouping accuracy for the GENOME dataset.

analyzed and so were taken out of the dataset.
The rest of the dataset was processed and we checked manually to
see if the labels were consistent. The results for the remaining 33
families can be seen in Table 6, where:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1_Score =
2 ∗TP

(2 ∗TP) + FP + FN (11)

TP represents the True Positives, counting how many pairs of apks
belonging in the same family were in fact grouped together, FP
are the False Positives, pairs of apks that don’t belong to the same
family but were put in the same group and finally FN are the False
Negatives, representing the number of pairs of apks that should
have been grouped according to the ground truth but weren’t.
The F1 score was chosen to ensure an equal weighting of the False
Positives and False Negatives. In the end, our tool achieved an F1
score of ~82%.
All results are averaged throughout every family and precision is
skewed by the fact that the dataset contains 5 variants of Droid-
Kungfu that often enough are grouped together (thus inflating False
Positive rates), while recall does not change that much because the
false negatives are pretty consistent.
It’s easy to see that accuracy of the grouping is improved by the
addition of the BVE and VDD formulas to check for API vector
similarity.

5.4 Case Studies

Most of the code reuse we found only involve simple app cloning,
sometimes with package and filename renaming, probably to avoid
detection by simpler tools.
Here instead, we describe some of our most interesting findings,
which are inter-group code reuse.

Code Removal. The group 2 of Dataset_1 + Dataset_2 contains
94 samples and is one of the biggest ones. All its members share the
methods encrypt(), decrypt(), getKey(), getMD5string(),

and init() that are deemed as interesting by GroupDroid when
filtering for cryptographic methods. However, when the analysis
gets extended to other functions (such as display functions), there’s
another group that shares a lot of code with samples from group 2.
In fact they share not only the code, but most of the application’s
structure (as shown in Figure 9). The reason they do not belong in
the same group according to GroupDroid is that they’re missing
all the classes that deal with encryption, making every sample in
the group more like a “scareware” as they lack the ability to do
any harm to the filesystem. This highlights one of the challenges
when trying to classify entire applications with regards to their
code similarity, as we need to manually set how much shared code
constitutes similarity to begin with.

Code Transformations. A lot of the samples encountered in our
analysis are clones, for example all members of group 2 inDataset_1
+Dataset_2 share the same exact code and file structure, apart from
7 samples that are just a chinese variant of the malware (they still
share the core code, but with a changed file structure of the app and
additional classes). Other families change some basic properties to
avoid detection, for example group 1 in Dataset_1 + Dataset_2

keeps all the code and method names intact, while every file name
changes between different samples.

The most interesting ones try to avoid detection by obfuscating
everything, from the file structure to their code, as is the case
of group 3 in Dataset_4, where every smali file is littered with
tens of methods (with encrypted names) that do not do anything
but call each other, thus obfuscating the CFG of the whole app.
Control Flow obfuscation is also applied to the individual methods,
making it a challenge for most similarity techniques. Despite this,
GroupDroid was able to successfully group together these apps
thanks to its relaxed CDD threshold (which allows greater control
flow manipulation) and to the use of the API vector checks.

5.5 Performance

The performance of GroupDroid varies wildly in relation to the
size of the dataset and the size of the samples in the dataset. We
made an empiric study, adding few apks at a time from the GENOME
dataset and timing howmuch it took for the system to analyze them.
Figure 10 details how much GroupDroid scales in comparison to
a thorough pairwise comparison (which would be quadratic) and
both linear and n log(n) functions (ideals) in the worst case.
The total run of the similarity check for 38.149 methods was around
80 seconds, while it would have taken more than 800 (circa 14
minutes) without search space reduction.

SSPREW-7 , December 4–5, 2017, San Juan, PR, USA N. Marastoni et al.

smali
com

sssp
BAH.smali
R$string.smali
R$xml.smali
R$id.smali
R$drawable.smali
bbb.smali
R$attr.smali
R$raw.smali
R.smali
R$color.smali
s$100000000.smali
s.smali
s$100000001.smali
MyAdmin.smali
R$style.smali
R$layout.smali
MD5Util.smali
M.smali
BuildConfig.smali
R$anim.smali
DU.smali

adrt
ADRTSender.smali
ADRTLogCatReader.smali

smali
com

bangbangtang
lock

R$string.smali
R$id.smali
R$drawable.smali
R$attr.smali
b.smali
R.smali
c.smali
a.smali
R$style.smali
R$layout.smali
BuildConfig.smali
b$100000000.smali

adrt
ADRTSender.smali
ADRTLogCatReader.smali

Figure 9: Case study, Code Removal (Section 5.4). The main instructions that have been removed are highlighted in red.

Figure 10: Performance of GroupDroid’s optimized comparison algorithm.

6 LIMITATIONS & FUTUREWORK

Code Obfuscation. While GroupDroid managed to group to-
gether apps that where employing CFG obfuscation techniques, it
still suffers from code obfuscation. This means that it might not be
able to handle advanced obfuscated code. Some features could be
better extracted in a dynamic way. For example our risky_api vector
stores how many times a certain API is written in the method’s
body, while it would be far more interesting to know how many
times it’s actually called at runtime.
We could also explore other techniques to circumvent code obfus-
cation, such as studying the Data Dependency Graph.

Whitelisting Known Libraries.A lot of GroupDroid’s false pos-
itives come from popular ad libraries (especially admob), since they
often use a subset of the risky APIs and are common enough to be
found in many samples. The worst cases happen when some parts

of an application without ads have been cloned, and the clone has
ads. If the cloned parts are less than the ads, the application will
appear to be more similar to other applications that employ ads
than to its own original. That’s why it’s usually good practice to
whitelist popular ad packages.

Semantic API Grouping Some APIs are often used together to
achieve certain goals, they can thus be grouped together and labeled
with higher level behaviours (for example TELEPHONY used in
conjunction with NET could mean privacy concerns). For now we
manually choose which APIs are interesting for our analysis but it
would be interesting to group them automatically.

Granularity. Right now, our analysis only considers similarity at
the method’s level, but instructions can easily be spread among
different methods, or some methods could be grouped, making our
approach unsound. A good approach could be to consider the entire

Automatically Grouping Mobile Malware by Extracting Code Similarities SSPREW-7 , December 4–5, 2017, San Juan, PR, USA

application’s CFG and search for common subgraphs. This is of
course a problem that is incredibly hard to tackle (NP-hard in fact)
and would require new heuristics and solutions to make it viable.

Performance. Almost every algorithm employed in GroupDroid
is parallelizable, in the future we will adopt a cluster of machines
with GPUs to divide the workload and speed up the application by
quite a bit.

Implementation. As previously explained in Section 4.2, every
feature and every report gets saved on disk in plaintext using some
serialization libraries. It would be better to utilize a Database driver
such as PostgreSQL or MySQL to store the results.

7 RELATEDWORK

Previous work on Android systems focused on detecting clones
and code reuse in Android apps, providing ways to cluster apks,
and detect and classify Android malware. Many of the proposed
methods employ static analysis to build features that can be used to
cluster the malware, and strive to make the analyses scalable while
keeping good accuracy results.

CloneDetection andCodeReuse. [16] employsNormalized Com-
pression Distance (NCD) on each method to find similar methods,
this work differs from our tool not only in the approach, but in the
focus, here authors focused on determining the quality of an obfus-
cation process, determining if an application has been infected with
malware, and extract the payload, and identify valid code updates.
Juxtapp [20] builds an application feature matrix and proposes a
scalable method to cluster and evaluate similarity between applica-
tions, it employs a scalable method and the evaluation has been run
on a dataset of 95, 000 unique Andrdoid applications. Juxtapp can be
used to detect code reuse, which allows to find instances of buggy
code, and malware, or pirated applications. [12, 13] are methods for
detecting cloned applications based on Program Dependency Graph
(PDG), the former measures similarity by first fitering methods,
and then exploiting subgraph isomorphism to measure similarity.
The latter instead exploits Locality Sensitive Hashing LSH to find
approximate near-neighbors feature vectors. Wang et al. [32] use
an approach based on filtering third party libraries, and then build-
ing a feature vector using API calls, the similarity is measured by
pairwise comparison using the Manhattan distance, this two-steps
process allows WuKong to be scalable and precise.

Mobile Malware Classification. Our proposed approach differes
from other methods for mobile malware classification, this problem
has been mainly tackled using machine learning: [15] extracts a
signature to represent repackaged malware and tries to cluster
malwares into families. [35] is based instead on a peculiar data
structure calledWeighted Contextual API Dependency Graphs(WC-
ADG) to capture the semantics of the methods and use these to
build a feature vector.

Mobile Malware Detection. Similar ideas have been proposed to
tackle malware detection: [5] employs static analysis to extract a set
of features that is then classified via linear Support Vector Machines
to detect if a sample ismalicious. An interesting instance is proposed
by [19] and is based on feature space embedding based on call
graphs. [2] evaluates how several machine learning algorithms
score with an API-based features set. Previous work explored also

the use of markov chains [26] for behavioral models, and Hidden
Markov Models (HMM) and structural entropy [8] to achieve mobile
malware detection. A slightly different approach is taken by [10],
which employs a features set obtained via both static and dynamic
analysis.

8 CONCLUSIONS

In this paper, we proposed a novel technique to identify Android
apps that share similar behaviors. Our approach is based on code
similarity and uses static features, such as 3D-CFG centroids and
API vectors, to compare apps at the method’s level. Leveraging
such approach, we implemented a tool, GroupDroid, that groups
Android malware according to code similarities. Exploiting the ob-
servation that malware authors reuse their malicious code across
different malware samples—either because they use piggyback-
ing techniques, or update their samples to release new versions—,
GroupDroid is not only able to identify groups of malware fam-
ilies, but it can also precisely recognize different variants of the
same family. Our experiments, against 4,211 known malicious apps,
showed that GroupDroid is accurate and efficient. Moreover, dur-
ing our evaluation we found several interesting cases of malware
families sharing (almost) the same malicious code.

ACKNOWLEDGEMENTS

We would like to thank our reviewers for their valuable comments
and input to improve our paper. This work has been supported by
the MIUR FIRB project FACE (Formal Avenue for Chasing malwarE)
RBFR13AJFT.

REFERENCES

[1] 2016. Google Play has hundreds of Android apps that con-
tain malware. (2016). http://www.trustedreviews.com/news/
malware-apps-downloaded-google-play

[2] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. Droidapiminer: Mining api-level
features for robust malware detection in android. In International Conference on
Security and Privacy in Communication Systems. Springer, 86–103.

[3] Niccolò Andronio, Stefano Zanero, and Federico Maggi. [n. d.]. HelDroid: Dissect-
ing and Detecting Mobile Ransomware. In International Symposium on Research
in Attacks, Intrusions and Defenses (RAID) (2015-10) (Lecture Notes in Computer
Science), Vol. 9404. 382–404. https://doi.org/10.1007/978-3-319-26362-5_18

[4] Jart Armin. 2013. Mobile Threats and the Underground Marketplace. APWG
White Paper: Mobile (2013).

[5] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. DREBIN: Effective and Explainable Detection of An-
droid Malware in Your Pocket.. In NDSS.

[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

[7] Michael Bierma, Eric Gustafson, Jeremy Erickson, David Fritz, and Yung Ryn
Choe. 2014. Andlantis: Large-scale Android dynamic analysis. arXiv preprint
arXiv:1410.7751 (2014).

[8] Gerardo Canfora, Francesco Mercaldo, and Corrado Aaron Visaggio. 2016. An
hmm and structural entropy based detector for android malware: An empirical
study. Computers & Security 61 (2016), 1–18.

[9] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets. In Pro-
ceedings of the 36th International Conference on Software Engineering (ICSE 2014).
ACM, New York, NY, USA, 175–186. https://doi.org/10.1145/2568225.2568286

[10] Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. 2016. Storm-
droid: A streaminglized machine learning-based system for detecting android
malware. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security. ACM, 377–388.

[11] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti,
Ali Zand, Christopher Kruegel, and Giovanni Vigna. 2017. Obfuscation-Resilient

http://www.trustedreviews.com/news/malware-apps-downloaded-google-play
http://www.trustedreviews.com/news/malware-apps-downloaded-google-play
https://doi.org/10.1007/978-3-319-26362-5_18
https://doi.org/10.1145/2568225.2568286

SSPREW-7 , December 4–5, 2017, San Juan, PR, USA N. Marastoni et al.

Privacy Leak Detection for Mobile Apps Through Differential Analysis. In Pro-
ceedings of the ISOC Network and Distributed System Security Symposium (NDSS).
San Diego, CA.

[12] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the Clones:
Detecting ClonedApplications onAndroidMarkets.. In ESORICS, Vol. 12. Springer,
37–54.

[13] Jonathan Crussell, Clint Gibler, andHao Chen. 2013. Andarwin: Scalable detection
of semantically similar android applications. In European Symposium on Research
in Computer Security. Springer, 182–199.

[14] Mila Dalla Preda and Federico Maggi. 2017. Testing android malware detectors
against code obfuscation: a systematization of knowledge and unified methodol-
ogy. Journal of Computer Virology and Hacking Techniques 13, 3 (2017), 209–232.

[15] Luke Deshotels, Vivek Notani, and Arun Lakhotia. 2014. Droidlegacy: Automated
familial classification of android malware. In Proceedings of ACM SIGPLAN on
Program Protection and Reverse Engineering Workshop 2014. ACM, 3.

[16] Anthony Desnos. 2012. Android: Static analysis using similarity distance. In
System Science (HICSS), 2012 45th Hawaii International Conference on. IEEE, 5394–
5403.

[17] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In Proc. of
the USENIX Conference on Operating Systems Design and Implementation (OSDI).

[18] Yanick Fratantonio, Chenxiong Qian, Pak Chung, and Wenke Lee. 2017. Cloak
and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In Proceedings of the IEEE Symposium on Security and Privacy (S&P). San
Jose, CA.

[19] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. 2013. Structural
detection of android malware using embedded call graphs. In Proceedings of the
2013 ACM workshop on Artificial intelligence and security. ACM, 45–54.

[20] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn
Song. 2012. Juxtapp: A scalable system for detecting code reuse among android
applications. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 62–81.

[21] Kaspersky Lab. 2016. Mobile Malware Evolution 2016. (2016). https://securelist.
com/files/2017/02/Mobile_report_2016.pdf

[22] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. 2017. Understanding android app piggybacking: A
systematic study of malicious code grafting. IEEE Transactions on Information
Forensics and Security 12, 6 (2017), 1269–1284.

[23] Martina Lindorfer, Alessandro Di Federico, Federico Maggi, Paolo Milani Com-
paretti, and Stefano Zanero. 2012. Lines of malicious code: insights into the
malicious software industry. In Proceedings of the 28th Annual Computer Security
Applications Conference. ACM, 349–358.

[24] Aravind Machiry, Eric Gustafson, Chad Spensky, Chris Salls, Nick Stephens,
Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Kruegel, and Gio-
vanni Vigna. 2017. BOOMERANG: Exploiting the Semantic Gap in Trusted
Execution Environments. (2017).

[25] Federico Maggi, Andrea Valdi, and Stefano Zanero. 2013. AndroTotal: A Flexible,
Scalable Toolbox and Service for Testing Mobile Malware Detectors. In Proceed-
ings of the 3rd Annual ACM CCS Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM). ACM.

[26] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2016. Mamadroid: Detecting an-
droid malware by building markov chains of behavioral models. arXiv preprint
arXiv:1612.04433 (2016).

[27] Guozhu Meng, Yinxing Xue, Zhengzi Xu, Yang Liu, Jie Zhang, and Annamalai
Narayanan. 2016. Semantic modelling of android malware for effective mal-
ware comprehension, detection, and classification. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM, 306–317.

[28] Jon Oberheide and Charlie Miller. 2012. Dissecting the android bouncer. Sum-
merCon2012, New York (2012).

[29] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.
2016. ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic. In
Proc. of the International Conference on Mobile Systems, Applications and Services
(MobiSys).

[30] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Av-
class: A tool for massivemalware labeling. In International Symposium on Research
in Attacks, Intrusions, and Defenses. Springer, 230–253.

[31] Statista. 2017. Global mobile OS market share in sales to end users from 1st
quarter 2009 to 1st quarter 2017. (2017). http://www.statista.com/statistics/
266136/global-market-share-held-by-smartphone-operating-systems/

[32] HaoyuWang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. Wukong: A scalable
and accurate two-phase approach to android app clone detection. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis. ACM, 71–82.

[33] Candid Wueest. 2017. Financial Threats Review 2017. (2017).
https://www.symantec.com/content/dam/symantec/docs/security-center/
white-papers/istr-financial-threats-review-2017-en.pdf

[34] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu. 2015. Effective
Real-time Android Application Auditing. In Proc. of the IEEE Symposium on
Security and Privacy (S&P).

[35] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-Aware
Android Malware Classification Using Weighted Contextual API Dependency
Graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14). ACM, New York, NY, USA, 1105–1116. https:
//doi.org/10.1145/2660267.2660359

[36] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. 2013. Fast,
scalable detection of piggybacked mobile applications. In Proceedings of the third
ACM conference on Data and application security and privacy. ACM, 185–196.

[37] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged
smartphone applications in third-party android marketplaces. In Proceedings of
the second ACM conference on Data and Application Security and Privacy. ACM,
317–326.

[38] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization
and evolution. In Security and Privacy (SP), 2012 IEEE Symposium on. IEEE, 95–
109.

[39] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get off of
my market: detecting malicious apps in official and alternative android markets..
In NDSS, Vol. 25. 50–52.

https://securelist.com/files/2017/02/Mobile_report_2016.pdf
https://securelist.com/files/2017/02/Mobile_report_2016.pdf
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-financial-threats-review-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-financial-threats-review-2017-en.pdf
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1145/2660267.2660359

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Approach and Methodology
	3.1 Filter
	3.2 Feature Extraction
	3.3 Code Similarity
	3.4 App Similarity
	3.5 Grouping

	4 System Details
	4.1 Search Space Reduction
	4.2 Implementation

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Grouping Results
	5.3 Grouping Accuracy
	5.4 Case Studies
	5.5 Performance

	6 Limitations & Future Work
	7 Related Work
	8 Conclusions
	References

