SYMBION: Interleaving Symbolic with
Concrete Execution

Fabio Gritti, Lorenzo Fontana, Eric Gustafson, Fabio Pagani, Andrea Continella,
Christopher Kruegel, and Giovanni Vigna

University of California, Santa Barbara
{degrigis, Ifontana, edg, pagani, conand, chris, vigna}@cs.ucsb.edu

Abstract—Symbolic execution is a powerful technique for
exploring programs and generating inputs that drive them into
specific states. However, symbolic execution is also known to
suffer from severe limitations, which prevent its application to
real-world software. For example, symbolically executing pro-
grams requires modeling their interactions with the surrounding
environment (e.g., libraries, operating systems). Unfortunately,
models are usually created manually, introducing considerable
approximations of the programs behaviors and significant impre-
cision in the analysis. In addition, as the complexity of the system
under analysis grows, additional models are needed, making this
process unsustainable. For these reasons, in this paper we propose
a novel technique that allows interleaving symbolic execution
with concrete execution, focusing the symbolic exploration only
on interesting portions of code. We call this approach interleaved
symbolic execution. The Kkey idea of our approach is to re-use
the concrete environment to run the input program, and then
synchronize the results of the environment interactions with the
symbolic execution engine. As a consequence, our approach does
not make any assumption about such interactions, and it is
agnostic with respect to the concrete environment. We implement
a prototype for this technique, SYMBION, and we demonstrate
its effectiveness by analyzing real-world malware, showing that
it allows us to effectively skip complex portions of code that do
not need to be analyzed symbolically.

Keywords—Computer Security, Reverse engineering, Malware.

I. INTRODUCTION

Symbolic execution has been shown to provide great ben-
efits in analyzing programs and understanding their properties
and behaviors, especially because of its ability to generate
inputs that drive the execution toward interesting program
states [1]-[4]. In particular, in the computer security commu-
nity, this technique has been used to improve the code coverage
of fuzzers [2], to reverse engineer malware [5], to discover
backdoors in closed-source software [6], and to automatically
generate exploits [2], [7]. Unfortunately, symbolic execution
is haunted by the state explosion problem [1], which prevents
this technique from being effectively applied to real-world
software. In fact, if used without any precaution, symbolic
execution tends to generate an exponentially increasing num-
ber of states that depend on symbolic data. For this reason,
most of the uses of symbolic execution need custom-tailored
heuristics to drive the exploration and to discard uninteresting
states. Moreover, to further reduce the number of states, the
interactions of the program under analysis with the surround-
ing environment are approximated by manually implemented

routines. These routines, known as models, emulate the effects
of a specific environment interaction (e.g., syscalls or calls
to third-party libraries) on the program’s (symbolic) state.
This approximation represents another distinct problem for
symbolic execution since models must be developed for every
interaction the program has with the environment.

For these reasons, the task of symbolically executing a
specific portion of an application’s code can be quite chal-
lenging. In fact, symbolically executing the program from
its entry point to the interesting part is often infeasible or
prohibitively slow. On the other hand, a mere “jump into the
middle” of the application (as proposed in under-constrained
symbolic execution [8]) introduces the risk of encountering
invalid program states caused by missing initialization code or
unsatisfied data dependencies.

However, symbolic reasoning about specific portions of a
program’s code is a very useful, and needed task, in various
fields. For example, consider a malicious program that, before
unpacking the code responsible for the communication with a
C&C server, executes some checks to fingerprint the execution
environment [9]-[12]. In this case, even if the interesting code
is the one that implements the communication with the C&C,
there is no other choice than starting to execute the program
inside the symbolic engine from its entry point, and waiting
for the communication routine to be unpacked. However,
this analysis is infeasible because the environmental checks
performed by the malware sample might leverage un-modeled
OS interactions, which are required to successfully reach the
unpacking code.

Previous work proposed different techniques to either nar-
row symbolic execution to a particular portion of code [7],
[13], [14], or avoid the execution of expensive portions of code
that are unnecessary at a specific point of the analysis [15].
However, most of these approaches cannot perform a runtime
analysis, i.e., they cannot modify data in memory to direct
execution through specific branches at runtime [7], [16], [17].
For instance, after a symbolic analysis, one could be interested
in flipping the condition of a branch to drive the concrete pro-
gram execution toward another path. Similarly, tools that are
tightly coupled to their dynamic analysis framework cannot be
used with arbitrary or non-traditional execution environments
(e.g., embedded devices). For instance, most of the existing
tools leverage QEMU [18] for program emulation, but if the
program cannot be emulated (e.g., due to hardware dependen-
cies), the only remaining solution is to run the application on
bare-metal. Unfortunately, this solution is often not compatible



with the design of the system used to symbolically analyze the
target program.

To address the aforementioned problems, in this paper we
introduce interleaved symbolic execution, a novel approach
for symbolically executing complex binaries. Our technique
provides granular control over the interleaving of concrete and
symbolic executions of the analyzed program, and removes
the need for implementing models for every environment in-
teraction. Differently from the concolic testing approach [19],
where the goal is to both symbolically and concretely execute
a full trace of the target program to eventually improve
code coverage, we aim at relieving the environment interac-
tion modeling problem by re-using the concrete environment
to symbolically execute only interesting portions of code.
Nonetheless, the problem we discuss in this paper also af-
fects concolic testing, and we, therefore, consider interleaved
symbolic execution orthogonal to concolic testing.

We implemented our approach in a tool, SYMBION, that
uses a modular, programmatically-controlled concrete environ-
ment where we execute the program under analysis until a
specified point of interest. Afterward, SYMBION synchronizes
the concrete state of the program with the symbolic execution
engine, allowing for further exploration and precise data-flow
reasoning. Finally, leveraging the information gained from
the symbolic exploration, the program can then be steered
toward a chosen branch by concretizing any symbolic data in
the program’s state and synchronizing its value back into the
concrete environment. By iterating this execution strategy, we
can delegate the execution of the complex portions of code
to the concrete environment, and apply symbolic execution
over arbitrary parts of the program. Moreover, our approach is
agnostic with respect to the concrete environment, providing
support for native targets running in any environment or
architecture (e.g., debugger, emulators, and hardware devices).

We implement SYMBION on top of angr [4], and we
evaluate it by analyzing real-world malware, showing how
interleaved symbolic execution can effectively support ana-
lysts when reverse-engineering malicious code. Specifically,
we show how SYMBION can be effectively used, without
requiring the modeling of complex environment interactions, to
detect the usage of a Domain Generation Algorithm (DGA),
to reverse-engineer the C&C commands required to trigger
malicious functionality, and to study the evasion techniques
employed by malicious code.

In summary, we make the following contributions:

e  We introduce interleaved symbolic execution, a novel
approach that fuses concrete and symbolic execution
by synchronizing the concrete state of a program
under analysis with a symbolic execution engine,
allowing the concrete execution to be steered by the
results of the symbolic exploration.

e We implement our approach in SYMBION, a sys-
tem that we release as an open-source project under
angr’s master!.

e  We show the effectiveness of SYMBION by presenting
analyses of real-world malware samples.

Thttps://github.com/angr/angr

II. MOTIVATION

When analyzing real-world programs, focusing on a
smaller portion of code makes the analysis more practical.
However, two main issues affect symbolic execution engines:
Missing Environment Models and Missing Data Dependencies.
The combination of these two problems often blocks the
possibility to study a specific functionality of the program:
it is not possible to initialize a symbolic execution engine at
a specific point because of missing data dependencies, nor it
is possible to reach that code from the entry point because of
missing environment models.

A. Missing Environment Models

This issue arises when the models required to simplify
a target program’s execution are either missing or partially
implemented. Depending on the design choices made to de-
velop a specific symbolic execution engine, this can happen at
three different levels: the API-level, the syscall-level, and the
instruction-level.

API-level. Some symbolic engine implementations provide
models for the most used functions (i.e., strcmp, strcpy, etc.)
included in the C standard library (libc). The calling sites of
these functions inside the program are then substituted with
calls into the corresponding model implementation. While this
choice has the benefit of relieving the symbolic execution
engine from executing code related to those functions (i.e.,
analyses are faster, and propagate symbolic data more accu-
rately), it puts the burden on the developers, who have to
implement a large number of models to support the analysis
of complex programs. If a model for a specific function is
missing, there are two possible solutions. The first one is to
let the symbolic engine explore the real code of the function,
while the second one is to skip the function body altogether
and return a symbolic variable at the call site. Unfortunately,
both solutions can introduce enough complexity to trigger a
state explosion.

Syscall-level. Similarly to API-level models, the syscall-level
models are designed to mimic the effects of system calls made
to a particular OS kernel. The majority of symbolic execution
engines provide models at this level because it avoids the need
to place the entire kernel in the emulated environment. Since
system calls have substantial side-effects on the system and the
user-land programs, models at this level must be complete and
precise or the symbolic execution will reach incorrect states.

Instruction-level. A common technique to support symbolic
execution on different architectures is to /ift a program’s code
(i.e., express assembly instructions with a higher-level repre-
sentation). In this way, symbolic execution engines can reason
on this lifted representation and use it to update the program’s
state accordingly. Unfortunately, modern CISC architectures,
such as Intel x86, count more than a thousand valid instructions
and most of them have side-effects. This still represents an
important challenge for the symbolic execution of intermediate
representations, because instructions can be unsupported, lifted
incorrectly, or have an incorrect or partial implementation. In
all these cases, invalid program states are generated and the
analysis results are unreliable.



func:
mov rax, [0x0000555555774000]7;
3 add rax, 0x10;
4 mov [0x0000555555774008], rax;

_loop:
6 mov rcx, [0x0000555555774008];
dec rcx;
8 mov [0x0000555555774008], rcx;

9 jnz _loop;

Fig. 1: Data dependency example

B. Missing Data Dependencies

Starting the symbolic exploration at arbitrary functions
allows to skip code not relevant for the analysis or containing
missing environment models. This operation is allowed by
many symbolic execution engines, which let their users initial-
ize and start the execution at specific, arbitrary addresses in the
program. However, to provide reliable results, this approach
requires forging a valid program state (i.e., the values of the
registers and the memory) and to correctly express its data de-
pendencies. These dependencies are generated when the code
that we are symbolically executing refers to data produced
by the execution of previous code. This makes the option of
manually providing the initial state an error-prone process. For
example, as shown in Figure 1, the effect of missing data
dependencies amplifies the problematic aspects of symbolic
execution even more, and generally leads to a state explosion
problem. In this example, if the data required for the com-
putation is not present at address 0x0000555555774000
the symbolic execution engine will store symbolic data at
0x0000555555774008. This value is later used to control
the loop termination (Line 9), and, since it is an unconstrained
symbolic variable, it can theoretically execute an unbounded
number of times, leading to a state explosion.

C. Motivating Example

Consider the snippet of code in Figure 2 that implements
malicious code. The goal is to symbolically explore the func-
tion called heavily_packed_function. We could start
to symbolically execute the malware from main; however,
let us assume that we stumbled into the missing API-level
model problem, and that the engine does not have a sym-
bolic implementation for the WinAPI at Lines 11, 12, and
14 (InternetOpenA, InternetOpenUrlA, and InternetReadFile,
respectively). As a result, the download_config function
returns a buffer containing symbolic data, which is then passed
as a parameter to parse_config at Line 34. This function
uses this buffer to initialize the variable xor_key_len (Line
20) that therefore will be symbolic as well. Unfortunately,
since this variable controls the loop’s termination, this causes
an unlimited number of iterations, and a consequent early state
explosion, that prevents the symbolic executor from reaching
the target function heavily_packed_function.

As we previously discussed, a possible way to
avoid these problems is to start the exploration from
heavily_packed_function itself. However, this
function calls another routine (evasion_check at Line
2) that depends on specific data (config) processed by a

1 void heavily_packed_function (char *config) {
evasion_checks (confiqg) ;

3 /* [ block of packed/encrypted code] */

: }

5 charx download_config()

6 {

7 HINTERNET hOpen = NULL, hFile = NULL;

8 DWORD dwBytesRead = O0;
9 char config[2000];
10 /* [ omitted code ] x/

11 hOpen = InternetOpenA() ;

12 hFile = InternetOpenUrlA (hOpen,

13 "www.evildomain.com/conf.cfg");

14 InternetReadFile (hFile, (LPVOID)config, ...);
15 /* [ omitted code ] */

16 return config;

17 }

18 void parse_config(char *malware_config) {

19 int config_len = atoi (malware_config[O0])
20 int xor_key_len = atoi(malware_config([l]
21 char xor_key[xor_key_len];

)

for (int i=2, j=0; i<xor_key_len; i++, j++){
24 xor_key[j]l= malware_config[i]

}

for (int i=xor_key_len, i<config_len; i++) {
28 malware_config[i]= malware_config[i] ~
29 xor_key[i%xor_key_len]
30 }
31 }
int main( int argc, char =**argv) {

char xmalware_config = download_config();
34 parse_config(malware_config);
35 decrypt_function (&heavily_packed_function,
36 malware_config.decryption_key)
heavily_packed_function (malware_configqg)

Fig. 2: Malware pseudocode example

previous routine (parse_config). Moreover, the code in
heavily_packed_function is partially packed, and in
the normal execution flow of the program, is decrypted by the
unpacking routine decrypt_function. Therefore, starting
the exploration from heavily_packed_function
would cause the analysis to fail because the code that
we want to analyze is revealed only after executing
decrypt_function.

Finally, another possible and commonly used solution to
these problems is to implement the missing models to enable
the symbolic execution to safely reach the interesting portion
of code. However, this approach requires time and effort, and it
is not always scalable if the number of required models is very
large. Consider, for example, complex programs like browsers,
media players, or even a kernel; the amount of work necessary
to implement the missing models can be unmanageable.

III. APPROACH

Our motivating example demonstrates the challenges of
applying simple symbolic execution approaches to real mal-
ware samples, highlighting the need for techniques that allow
one to effectively explore arbitrary program functions. For
this reason, in this paper, we propose interleaved symbolic



execution, a technique that aims to enable a precise symbolic
exploration of arbitrary functions. The key idea behind this
approach is to symbolically execute a specific target function
in its correct context. In practice, we concretely run the
program under analysis until the initialization of such context
is complete, and, after that, we synchronize the concrete state
with the symbolic execution engine, replicating the concrete
environment. Finally, starting from our synchronized state, we
bootstrap our symbolic execution analysis. Essentially, our
approach allows for the interleaving of symbolic execution
with concrete execution, focusing the benefits of the symbolic
exploration on specific portions of code. More precisely, given
a binary program, interleaved symbolic execution is carried out
in three phases.

Phase 1: Initial Concrete Execution. We concretely exe-
cute the input binary from a Concrete Starting Point (CSP)
to an arbitrary Point of Interest (PoI). Generally, at the
beginning of the analysis, the CSP is the entry point of the
binary. When the program’s execution reaches the PoI, we
stop it in that specific state (i.e., memory and registers).

Phase 2: Interleaved Symbolic Execution. Once the con-
crete execution reaches our PoI, we synchronize the con-
crete execution state with the symbolic engine. In practice,
we instantiate a new symbolic state, we replicate the
concrete state (i.e., by reconstructing the memory layout
and the registers’ values), and we set parts of the state
(i.e., memory or registers) as symbolic. For instance, we
might set as symbolic specific memory areas to uncover
their data dependencies within the next blocks of code.
We then explore the program symbolically until we reach
a Target Point (TP).

Phase 3: Re-Synced Concrete Execution. When the sym-
bolic execution reaches our target point, TP, we collect the
constraints introduced during the exploration and evaluate
them to obtain, for each symbolic variable, a concrete value
that satisfies the collected constraints. Finally, we store
the results of our symbolic exploration into the concrete
process memory to drive the concrete execution from PoI
to TP, thus achieving the exploration of our target point.

Note that we can iterate over our three phases by consid-
ering the TP as a new CSP (or a new Po1I), therefore further
exploring the input program.

Our approach enables the delegation of the execution of
code affected by missing environment models to a concrete
environment, and reconstructs an execution state that allows
for the symbolic execution of the program from the Po1I to the
TP, without being affected by the missing data dependencies
issue. Moreover, our system is agnostic with respect to the
specific concrete environment and only requires a simple
interface to control the program’s execution. This allows for
the flexible application of this approach to a broad range
of scenarios, e.g., running firmware on native hardware and
obtaining its execution state through JTAG debug ports.

Comparison with Existing Approaches. We compare SYM-
BION with the most similar related approaches. In our com-
parison, we take into account four different features that
are needed to support symbolic execution-based analyses of

complex programs (Table I) across different environments.

e  Run-time analysis: whether the approach allows users
to modify the target’s memory at runtime, therefore
steering the execution toward specific paths.

e Multi-Targets Support: whether the approach supports
the execution of targets running inside different envi-
ronments (e.g., embedded systems).

e  Programmatic Context Switching: whether the tool
provides a programmatic interface to change the
execution context of the program from concrete to
symbolic, and vice-versa.

e [nstrumentation Independency: whether the approach
is self-contained or strictly relies on a specific envi-
ronment or on another component to analyze the target
binary (e.g., QEMU, Pin). This makes the approach
less general, as it is limited by the capabilities of the
underlying instrumentation layer.

As we can see in Table I, the most similar approach is im-
plemented by Avatar?. The tool can be used to implement run-
time analyses and its flexible interface can be used to easily
support different execution environments, moreover, Avatar?
does not need specific instrumentation of the target binary to
perform analyses. However, a programmatic context switching
is not officially supported by the tool. Triton implements a
similar approach, but due to its dependency from an instru-
mentation framework (Pin [20]), it does not have fully multi-
targets support, moreover, it lacks an interface to implement
programmatic context switching. Finally, S*’Eand Mayhem,
were not conceived to perform these kinds of analyses and
they miss a proper interface to perform run-time analyses
and programmatic context switching. Table I summarizes the
comparison of such tools using the described features.

IV. SYSTEM DETAILS

We implemented SYMBION on top of the multi-platform
binary analysis framework angr [4]. The software is written
in Python, and its versatility and flexibility are well-suited to
implement and prototype new research ideas.

A. Design Requirements

One of SYMBION’s goals is to support switching between
concrete and symbolic execution, avoiding expensive transfers

TABLE I: Features comparison between SYMBION and related
works. (v') means the tool has the specified feature. (X) means
the tool does not have the specified feature. (~) means the tool
partially implements the specified feature.

Run-time | Multi-Targets | Programmatic | Instrumentation
Analysis Support Context Independency
Tool Switching
SYMBION v v v v
Avatar? v v ~ v
Triton v ~ ~ X
S°E X X X X
Mayhem X X X X




Concrete environment Symbolic execution engine

mem[W]=0

. mem[X] =sym_var A
Csp HH mem[YL sym_var B
1 mem(Z]=7
- A
: BRI I .
© Complex { / i .
code sl ‘p : .

mem|
mem|

l, _- N
mem[W] =0 - : A
mem[X] = 1 P

(Y1-5 LRl L

1 i TP

Fig. 3: An example of a Concrete—Symbolic transition.

of state. To implement the state synchronization from the
concrete world to the symbolic world, we need a way to
stop the program’s execution at a PoI, copy the values of
all the registers, and import them inside the symbolic engine.
Moreover, we need to efficiently synchronize the memory
of the concrete state inside the symbolic engine, and take
care of all the details related to the underlying architecture
(e.g., in the x86 architecture we need to synchronize the
segment registers). We refer to this transition using the no-
tation Concrete—Symbolic and we show an example of this
transition in Figure 3. In Figure 3(a), we show three paths
(P1, P,, P3) that start from the CSP, end in the PoI, and pass
through a block of complex code. The concrete execution of
P, causes the memory of the program at the PoI to contain
0,1,5,7 at addresses W,X,Y,Z, respectively. Now that the PoT
is reached, SYMBION automatically imports the concrete state
into the symbolic engine. To begin our symbolic analysis,
using SYMBION, we set the memory at addresses X and Y
to be symbolic Figure 3(b) to eventually reason about paths in
the program influenced by these memory locations.

Now the symbolic engine can explore different paths
until the TP. Once the TP is reached, a Symbolic—Concrete
transition is started. To implement this transition, SYMBION,
under the user guidance, applies the memory modifications
needed in the concrete process to reach the TP.

Figure 4 shows an example of this type of transition. In
Figure 4(a) we have symbolically reached the TP, and by
asking the constraint solver for possible values for mem[X]
and mem[Y] we get respectively 6 and 3. In Figure 4(b),
these values are synchronized into the concrete process, which
is eventually resumed to reach the TP. At this point, TP can
become a CSP state itself, effectively resuming the interleaved
symbolic execution of the program.

Finally, we want to design a versatile interface to decouple
our tool from the execution environment of the target program.

Symbolic execution engine Concrete environment

mem[W]=0 -
mem[X] =sym_var_A . Csp
mem[Y]=sym_var B D
mem([Z]=7 -
/ H
/ Tl
mem(X] >0/ mem[X] <0 : :
D Complex O h
i < ,

code S~ P

mem[X] >0 l
mem[Y]!=3 P

mem[X] >0 /
: mem[Y]=3 /
: /

¥

mem[W] =0
> Imem[X]=6

mem[Y] =3
> imem[Z]=7

TP

Concrete values
from solver to
reach TP:

mem[X] =6 .
mem[Y] =3

TP

Fig. 4: An example of a Symbolic—Concrete transition.

B. angr

Here we want to discuss the relevant concepts of angr,
which plays a central role in SYMBION architecture.

SimState & SimEngine. angr executes programs by creating
simulated states (SimStates). A SimState is logically a snapshot
of a program in a specific state. A SimState memory can be
manipulated to define some data as symbolic. To symbolically
execute the program, angr receives as input a SimState, and,
by using an Execution Engine (SimEngine), applies the effects
of the program’s instructions on that state to produce new
SimStates (called successors).

SimPlugin. A SimPlugin is an object that holds additional
data about a SimState. Moreover, it implements an interface
to deal with the SimState lifecycle. The easiest example is
the state.globals plugin that can be used to propagate
information and data from one SimState to its successor.

Simulation Manager & Exploration Technique. A sim-
ulation manager (SimManager) is an interface that affects
how successors are generated by applying search strategies
(Exploration Techniques) to explore the program’s execution
paths.

SimProcedures. SimProcedures are Python routines that
angr uses to synthesize the effect of syscalls and external
libraries functions on an input SimState. These routines are
imported during the initialization of the target program, and
they are executed during the symbolic execution of the target.

C. Symbion

To develop SYMBION, we implemented a new SimEngine
called SimEngineConcrete, a new Exploration Technique
named SYMBION, and a new SimPlugin called Concrete.
Moreover, we introduced a new concept, called ConcreteTar-
get, that exposes an interface that has to be implemented to
support concrete execution in a new environment. An overview
of SYMBION’s architecture is shown in Figure 5.



e Symbolic execution Concrete
: . new engine M environment :
1| SimState . i :
: SimState

Symbion Concrete Debugging

( Exploration Technique ) Target Component
Concrete Target
SimPlugin Binary

| SimEngineConcrete

Fig. 5: Overview of SYMBION architecture.

SYMBION Exploration Technique. This new exploration
technique exposes the basic APIs to interact with the system.
Using these APIs, the user can define the PoI, and, therefore,
specify where to stop the concrete execution in the concrete en-
vironment. Moreover, this interface lets users change memory
and registers’ values in the concrete environment, effectively
controlling the execution of the target program from angr.

ConcreteTarget. This object exposes basic methods to interact
with a new concrete environment. One of SYMBION’s key fea-
tures is that it can be easily extended to support new execution
environments. To do so, developers only need to implement a
ConcreteTarget that exposes the following methods:

e read _memory (address, nbytes): returns
nbytes bytes from the concrete process memory,
starting from address.

. write_memory (address, value): writes
value in the concrete process memory at address.

e read_register (register): returns the content
of the specified register of the concrete process.

e write_register (register, writes

value in register.

value):

e set_breakpoint (address): sets a breakpoint
at address in the concrete process.

° remove_breakpoint (address):
breakpoint previously set at address.

removes  a

° run () : resumes the concrete process execution.

A possible implementation of this interface is the
GDBConcreteTarget, which is used to programmatically
control the target program, running on a possibly remote
machine, under a gdbsever.

SimEngineConcrete. The SimEngineConcrete leverages an
implementation of the ConcreteTarget interface (e.g., the GDB-
ConcreteTarget) to perform the following steps:

e  Modify the concrete process memory with the values
provided by the user at specific memory addresses.

e  Modify the concrete process registers with the values
provided by the user.

e Set the new PoI by translating them into breakpoints.

e  Resume the execution of the program until a new PoI
is reached, and give the control back to angr.

This execution flow effectively implements the transition
Symbolic—Concrete.

Concrete SimPlugin. This plugin implements the transition
Concrete— Symbolic. The execution of this plugin happens as
soon as the target program, running in the concrete environ-
ment, hits a PoI set by the SimEngineConcrete. The plugin
leverages the ConcreteTarget to import the concrete state of
the program inside angr, thus creating a new SimState. The
steps performed by this object are the following:

e  Set the new SimState’s memory backend to redirect all
the future memory reads, performed by the program
during the symbolic execution, to the memory of the
concrete process.

e Copy the values of all the registers in the concrete
state inside the newly generated SimState.

e  Synchronize the memory mapping of the concrete
process with the memory mapping loaded by angr
during the startup (e.g., where the main module and
libraries are loaded).

V. USE CASES

Here we show how SYMBION can be successfully used to
analyze real-world malware. As we summarized in Table II,
for our experiments we chose three different malware sam-
ples affecting two different operating systems (Windows and
Linux). The main focus of these use cases is to show how
interleaved symbolic execution can help perform a symbolic
analysis of complex software.

Experiment setup. To run the samples we used two different
virtual machines - one running Windows 7 and the other
running Ubuntu 18.04 - both equipped with 4GB of RAM
and 2 CPUs. For all the use cases, we leverage a gdbserver
to run the target program inside the concrete environments.
As a ConcreteTarget object, we re-used the GDBTarget made
by Avatar? [21] with some minor modifications. We call this
specific concrete target AvatarGDBConcreteTarget, and we
eventually initialize the SimEngineConcrete using this object.
The symbolic execution engine (angr) is running on an Ubuntu
18.04 host with 32GB of RAM and an Intel Core i7-4770 CPU.

The source code of these examples is publicly available at
https://github.com/degrigis/symbion-use-cases.
A. Tracking C&C Domains Generation

For this example, we analyze a malicious PE32 binary that
implements a password stealer distributed by spam emails.

TABLE II: Use Cases

Type |Family| Usecase | OS | MD5

Trojan | Symmi | Detect DGA | Win | 221¢235bc70586¢ce4f4def9a147b8735
Bot Bashlite | C&C commands | Linux | 3d257d80963c9¢905e883b568f997550
Ransom | Credle Evasion Win | 53f6f9a0d0867¢10841b815aleeal468




I <BV32 (if ((((0xO .. __add__ (Oxfeb624e21,
SystemTimeAsFileTime_0_64[63:32], 0x0 .. (if
(SystemTimeAsFileTime_0_64[31:0] <=
(0x2acl18000 +
SystemTimeAsFileTime_0_64[31:0])) then O
else 1)) ... [ omitted data ]

Fig. 6: Symbolic data in gethostbyname parameters.

Goal. During the first step of manual analysis, we saw that
the sample makes requests to domains possibly generated
by a Domain Generation Algorithm (DGA). This technique
allows bots to periodically generate a new C&C domain
to contact as a means to evade defenses based on domain
blacklisting. Since the implementation of a DGA is quite
often time-dependent, we want to confirm this hypothesis
by trying to identify a connection between the WinAPI call
GetSystemTimeAsFileTime at address 0x0040c493
and the call gethostbyname at address 0x00407£58.

Challenges. The malware is not packed, but during a pre-
liminary reverse-engineering we confirm that, during startup,
a lot of complex and superfluous code (e.g., calls to random
WinAPIs, allocation, and de-allocation of memory) are used to
confuse an analyst, and to slow down the analysis performed
by automated tools. Moreover, the sample includes a heavy
initialization step during which four different threads compute
the address of the main function of the malicious code. This
complex initialization step would be enough to hinder any
approach based on pure symbolic execution of the code, since
symbolic execution would certainly incur in the state explosion
problem.

Analysis. By leveraging SYMBION, we let the malware run
until the initialization step is done, precisely, until the call
to GetSystemTimeAsFileTime. After that, we perform
a Concrete—Symbolic transition, and we mark the buffer
returned from GetSystemTimeAsFileTime as symbolic.
Now we let the symbolic engine explore the binary until it
calls the function gethostbyname. Finally, when we reach
gethostbyname, we inspect the data used as a parameter
to check if symbolic data flows between the two calls.

To summarize:

e CSP; = Binary Entry Point (0x40£827),

e PoI; = call to GetSystemTimeAsFileTime
(0x0040c493),

e TPy =call to gethostbyname (0x00407£58).

By implementing this analysis using SYMBION, we can
see that the parameter for the gethostbyname call is indeed
symbolic, and that it depends on the symbolic variable returned
by the GetSystemTimeAsFileTime call (Figure 6).

B. Tracking Malicious Bot Commands

In this use-case, we show how SYMBION can be used to
analyze an instance of a Bashlite backdoor (know as Qbot or
LizardStresser). This Linux malware targets IoT devices, and
it is used to build botnets exploited for DDoS attacks.

Goal. When analyzing a malware sample, a common problem
is the ephemerality of the malicious infrastructure behind it.
This affects most of the dynamic analysis techniques - for
example when the sample is run in a sandbox - because the
sample does not show its malicious behavior. In this use-case,
we show how SYMBION can circumvent this problem, and how
it can be used to identify which command triggers a specific
functionality (e.g., the ovhflood action).

Challenges. When we run this sample, we can see
that it attempts to connect to its C&C server at
185.244.25.213:3437. However, this server is not work-
ing anymore, and thus, simply debugging the binary to under-
stand which functionality is triggered by a specific command is
not trivial. Moreover, this sample creates a new child process
to handle every request received from the C&C server. This
behavior represents a problem for symbolic execution engines
because forking introduces considerable complexity (i.e., the
engine must model the presence of another child process).

Analysis. To start our analysis, we manually identified the rou-
tine (called echocommand) that implements the dispatcher
for the received commands at address 0x407ec4. However,
to reach this part of the code, a particular sequence from
the C&C needs to be received. Given the different challenges
involved, we break down this analysis in two different steps.
First of all, we must understand and identify the sequence that
we need to provide to the binary to reach the echocommand
function. Then, when this sequence is uncovered, we can sym-
bolically explore the program to understand which command
triggers the specific functionality (ovhflood).

For this reason, we start the analysis by concretely exe-
cuting the malware right after the connection attempt to the
C&C; after that, we switch control to the symbolic execution
engine, we modify the memory as if the connection has been
successful, and we resume the concrete execution until the
instruction before the call to recvline at 0x40abd3. At
this point, we perform another Concrete— Symbolic transition,
and we mark the buffer returned by recvline as symbolic.
To conclude this stage, we let the symbolic engine explore the
binary until it calls the echocommand function.

The malware code execution is split in the following way:

e CSP; = Binary Entry Point (0x40a488).

e PoI; = Code right before the recvline
(0x40abd3’).

e TP; = First instruction of echocommand
(0x407ec4).

Finally, by concretizing the symbolic variable returned by
recvline (Figure 7), we can see the string the malware
expects to receive to eventually start parsing malicious com-
mands.

To begin the second step of our analysis, we simply
concretize this sequence in the program memory, and resume
the concrete execution until the beginning of echocommand.
Once there, we perform another Concrete— Symbolic tran-
sition. Finally, we set the command buffer back to being a
symbolic variable, and symbolically execute the program until
we hit the basic block where the malware calls the ovhflood



I print (next_state.solver.eval (cmd_buffer_symbolic,
2 cast_to=bytes))
3 b/ I\xff \n\r\x00’

Fig. 7: Dumping the sequence of chars that will bring the
execution to the echocommand functionality.

I print (next_state.solver.eval (cmd_buffer_ symbolic,
cast_to=bytes))
3 b’ OVH\x00"

Fig. 8: Command we need to send to the backdoor to activate
the ovhflood functionality.

function (address 0x409db2). By solving the constraints for
the new symbolic buffer we can extract the command to reach
this specific functionality in the program.

For this step, we split the malware execution in this way:

e (CSP, = TP; = First instruction of echocommand
(0x407ec4).

° PoI, = CSPs.
e TP, =call to ovhflood (0x409db2).

Note that, in this phase, we do not need any concrete
execution from CSP; to PoI,, rather we want to symbolically
explore the code immediately starting from TP, (reached in the
previous phase). To do this, we logically define that the new
PoI, equals to the CSP,. Unfortunately, since this function
is quite complex, we run into the state explosion problem.
We decided to help angr symbolically explore this piece of
code by leveraging a technique known as directed symbolic
execution [22], that basically prunes paths that do not connect
CSP; (echocommand) and the TP, (call to ovhflood).

To conclude our analysis, once the TP, (call to
ovhflood) is reached, we solve the constraints over the
symbolic buffer containing the command, and we extract the
string we need to use to reach this functionality, which, in this
example, is the string “OVH” (Figure 8).

C. Bypassing Malware Evasion

In this example, we analyze a ransomware sample that
uses a dynamic anti-analysis check to detect a virtualized
environment.

Goal. First, we manually confirm that the ransomware be-
havior starts at address O0x4214e4. However, this code is
conditionally executed depending on the results returned by a
call to the GetProcessAffinityMask WinAPL The goal
of this analysis is to understand which value this WinAPI has
to return to eventually trigger the malicious code.

Challenges. The binary is packed, and therefore applying
symbolic execution from the entry point of this sample would
certainly run into the space explosion problem.

Analysis. We manually identify the point in the program
where the code is fully unpacked and we spot the call

to the Windows API GetProcessAffinityMask (ad-
dress: 0x7502a889). Here, we trigger a Concrete—Symbolic
transition. To symbolically analyze this part of code,
we need to write one simple SimProcedure to hook
the GetProcessAffinityMask call’. In particular, this
model just fills the buffers used to store the call’s results
with symbolic data. Using the constraints collected over
those symbolic variables we will later understand which
values force the malware to show its real behavior. Note
that, without using SYMBION, the amount of SimProce-
dures that a user needs to write to reach the TP would
have been considerably larger. Now, we symbolically exe-
cute the program until the first instruction of the malicious
behavior: 0x4214e4. At the end of the exploration, we
ask the constraint solver to concretize the symbolic vari-
ables set by the GetProcessAffinityMask SimPro-
cedure. In particular, we get the value 0x2902b319 for
lpSystemAffinityMask, which reports a value greater
than 0x2 for the CPU’s number of cores (the sample is
checking CPU features to fingerprint virtual environments).
By concretizing these solutions in the memory of the concrete
process we can observe the execution of the malicious code.

We split the malware code execution in the following way:

e CSP; = Malware main function (0x40fae®6).

e PoI; = Call to GetProcessAffinityMask
(0x7502a889).

e TP, = Start of malicious behavior (0x4214e4).

VI. DISCUSSION

Program Execution Correctness. SYMBION does not keep
track of the constraints needed to reach the multiple TP defined
during the analysis. Therefore, since users have full control ca-
pabilities over the target program (they can change the memory
at any time in inconsistent ways), it is possible to generate
infeasible program’s executions. The analyses developed on
top of SYMBION are responsible to handle this problem if the
program execution correctness is a strict requirement.

Desynchronized Environment Interactions. Any environ-
ment interaction made by the concrete process that involves
resources outside of the process memory is not shared with
the symbolic engine. For instance, consider a program that
opens a file during the concrete execution, and, after that,
a Concrete—Symbolic transition is performed. During the
symbolic execution, if a read over that file happens, our
symbolic engine uses an abstraction for that file that is com-
pletely desynchronized from the one in the concrete process.
The same effect occurs in the case of open sessions with
remote servers or device drivers. It is possible to support a
synchronization mechanism on top of SYMBION to update the
symbolic engine’s state when a certain behavior (e.g., a file
is opened) happens, but we consider the development of this
solution outside of the scope of this work.

2Note that here we use a SimProcedure only to programmatically break the
execution and set a symbolic buffer, conceptually implementing a breakpoint.
Instead, using SYMBION we do not need to write SimProcedures that model
all the environment interactions required to bring the execution to the state of
interest.



Concretization Policy. After reaching the TP, SYMBION
performs a Symbolic—Concrete transition. During this pro-
cess, the symbolic variables need to be concretized, and their
concrete values committed to the concrete process memory.
During this process, we need to specify the subsets of variables
to be concretized and committed, and also which concrete
values should be used (a satisfiable SMT expression can have
multiple valid solutions, by default, SYMBION, picks the first
solution). We decided to not force the users to concretize all
the symbolic variables but rather give them the freedom to
choose the ones they think are important for the analysis.

Targets Support. Currently, SYMBION supports analyses of
binaries on x86 and ARM architectures, and only a GDBTarget
has been implemented. Nevertheless, we do not consider this
an inherent limitation of SYMBION, because supporting more
architectures only requires more engineering effort.

VII. RELATED WORK

Applying symbolic execution only to specific parts of a
program has been tackled by researchers in the past.

Chipounov et al. [14] proposed S?E, an automated path
explorer that lets users define which part of a program has to
be executed symbolically and which part as to be executed con-
cretely. Cha et al. [7] developed Mayhem, an AEG (automatic
exploit generation) system that is based on strict cooperation
between a Concrete Executor Client (CEC) that runs the code
inside a virtual machine, and a Symbolic Executor Server
(SES) that symbolically explores traces provided by the CEC.
Inputs generated by the SES are sent back to the CEC to
increase the code coverage of the target binary. Differently
from Mayhem and S2E, SYMBION does not work with traces,
nor defines a priori which parts of the program have to be
symbolically executed.

Saudel et al. [13] proposed Triton, a dynamic binary analy-
sis framework based on Intel’s Pin [20]. The target program is
instrumented using Pin, and users can use selective symbolic
execution leveraging the API provided by the tool. Fioraldi
developed angrdbg [23], a library to generate angr’s states
from a concrete state of a program under analysis. Specifically,
angr is imported inside a running instance of gdb, and after
that, it is possible to create a symbolic state given the current
concrete state of the program. Differently from angrgdb and
Triton, in SYMBION the symbolic execution engine does not
live inside a debugger, nor it is dependent on a particular
dynamic execution environment (e.g., Pin or gdb).

Muench et al. [21] developed the multi-target orchestration
platform Avatar?. This platform allows for the synchronization
of multiple executions and analysis targets, such as emulators,
hardware, and even symbolic execution engines such as angr,
in a target-agnostic way. To accomplish this, the system
supports both the forwarding and synchronization of registers
and memory between targets. The main focus of Avatar? is to
support the analysis of embedded systems, while SYMBION
provides a programmatic interface to support interleaved sym-
bolic execution of complex targets.

Baldoni et al. [24] applied symbolic execution to real-world
malware by implementing a tool that imports the concrete state

of the malicious program inside a symbolic execution engine.
SYMBION implements an idea similar to Baldoni et al., but
in a completely automated way. Moreover, it is possible to
carefully steer the concrete execution from a symbolic analysis
to bring the execution at a specific point in the code.

VIII. CONCLUSIONS

In this paper, we showed how symbolic execution of
complex programs is generally problematic because of missing
environment models and missing data dependencies, which
together block the possibility to perform a symbolic analysis
on a target program. To solve this problem, we proposed
interleaved symbolic execution, a novel approach to execute a
target binary by interleaving concrete and symbolic execution.
We implemented our approach in SYMBION, a system built
on top of the angr framework. We demonstrated how this
technique solves the presented issues, and how it supports the
analyses of real-world binaries. As a further demonstration, we
have been publicly notified that SYMBION is currently being
used by the community for different research projects, and by
a large corporation for internal projects.

IX. ACKNOWLEDGMENTS

We would like to thank our reviewers for their valuable
comments and inputs to improve our paper.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NAO0003525. This material is based upon work supported by
AFRL under Award No. FA8750-19-C-0003. This material is
also based on research sponsored by DARPA under agreement
number HR001118C0060. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of DARPA, the U.S. Government, or the other sponsors.

REFERENCES

[1] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later.” Commun. ACM, vol. 56, no. 2, pp. 82-90, 2013.

[2] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2016.

[3] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A
new approach to computer security via binary analysis,” in Proceed-
ings of the International Conference on Information Systems Security.
Springer, 2008.

[4] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in Proceeding of the IEEE Symposium on Security and
Privacy (S&P), 2016.

[5] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution

paths for malware analysis,” in Proceeding of the IEEE Symposium on
Security and Privacy (S&P), 2007.



[6]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice-automatic detection of authentication bypass vulnerabilities
in binary firmware.” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2015.

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2012.

D. A. Ramos and D. Engler, “Under-constrained symbolic execution:
Correctness checking for real code,” in Proceedings of the USENIX
Security Symposium, 2015.

R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi, “A fistful
of red-pills: How to automatically generate procedures to detect cpu
emulators,” in Proceedings of the USENIX Workshop on Offensive
Technologies (WOOT), 2009.

M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti, “Detecting
environment-sensitive malware,” in Proceedings of the International
Symposium Recent Advances in Intrusion Detection (RAID), 2011.

D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: Bare-metal analysis-
based evasive malware detection,” in Proceedings of the USENIX
Security Symposium, 2014.

M. Polino, A. Continella, S. Mariani, S. D’ Alessio, L. Fontana, F. Gritti,
and S. Zanero, “Measuring and defeating anti-instrumentation-equipped
malware,” in Proceedings of the Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA), 2017.

F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution frame-
work,” in Symposium sur la sécurité des technologies de I'information
et des communications, SSTIC, France, Rennes, June 3-5 2015. SSTIC,
2015.

V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for
in-vivo multi-path analysis of software systems,” in ACM SIGARCH
Computer Architecture News. ACM, 2011.

D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped sym-
bolic execution,” in Proceedings of the ACM International Conference
on Software Engineering (ICSE), 2018.

C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs.”
in OSDI, 2008.

P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing
for security testing,” Communications of the ACM, vol. 55, no. 3, pp.
4044, 2012.

F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, 2005.

K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine
for ¢,” in ACM SIGSOFT Software Engineering Notes. ACM, 2005.
Intel, “Pin - A Dynamic Binary Instrumentation Tool,” https://software.
intel.com/en-us/articles/pin-a-dynamic- binary-instrumentation- tool,
2019.

M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar 2: A
multi-target orchestration platform,” in Proceedings of the Workshop
on Binary Analysis Research (BAR), 2018.

K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in International Static Analysis Symposium. Springer, 2011.
A. Fioraldi, “Symbolic Execution and Debugging Synchronization,”
Bachelor’s thesis, Sapienza University of Rome, October 2018.

R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Assisting mal-
ware analysis with symbolic execution: A case study,” in International
Conference on Cyber Security Cryptography and Machine Learning.
Springer, 2017.



