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Abstract. We investigate the problem of detecting advanced covert
channel techniques, namely victim-aware adaptive covert channels. An
adaptive covert channel is considered victim-aware when the attacker
mimics the content of its victim’s legitimate communication, such as
application-layer metadata, in order to evade detection from a security
monitor. In this paper, we show that victim-aware adaptive covert chan-
nels break the underlying assumptions of existing covert channel detec-
tion solutions, thereby exposing a lack of detection mechanisms against
this threat. We first propose a toolchain, Chameleon, to create syn-
thetic datasets containing victim-aware adaptive covert channel traffic.
Armed with Chameleon, we evaluate state-of-the-art detection solu-
tions and we show that they fail to effectively detect stealthy attacks.
The design of detection techniques against these stealthy attacks is chal-
lenging because their network characteristics are similar to those of be-
nign traffic. We explore a deception-based detection technique that we
call HoneyTraffic, which generates network messages containing honey
tokens, while mimicking the victim’s communication. Our approach de-
tects victim-aware adaptive covert channels by observing inconsistencies
in such tokens, which are induced by the attacker attempting to mimic
the victim’s traffic. Although HoneyTraffic has limitations in detect-
ing victim-aware adaptive covert channels, it complements existing de-
tection methods and, in combination with them, it can to make evasion
harder for an attacker.

1 Introduction

Malicious software requires network communication in order to perform many
of its functionalities [1]. For instance, bots receive instructions from Command
and Control (C&C) servers [2], ransomware downloads encryption keys from re-
mote locations [3], and information stealers exfiltrate data to external servers [4].
Malware activities last as long as security monitoring products do not identify
the suspicious behavior, and operators are able to clean the compromised ma-
chine from the infection. Consequently, attackers implement techniques to evade
network monitoring tools to pursue their malicious activities for a longer pe-
riod of time. These techniques are known as covert channels [5]. Attackers can
in fact make their communication stealthier by applying advanced techniques
that morph network messages into “benign-looking” traffic. We call this type of
channels adaptive covert channels. Adaptation can be performed in two ways: a
priori adaptation and victim-aware adaptation.



The most common type of adaptation is a priori adaptation, where the at-
tacker implements her communication to look like benign software or protocol
before compromising any machine. The anti-censorship community provides sev-
eral examples [6,7]. Wright et al. [8] proposed to modify the packet sizes distribu-
tion of one class of applications in order to resemble another class. Moghaddam
et al. [9] and Weinberg et al. [10] proposed two tools to camouflage TOR traf-
fic as Skype and HTTP protocols, respectively. Examples can also be found in
known malware samples, which mimic predefined, well-known applications, such
as the Windows and Yahoo Messenger protocol [11], or common browsers.

However, there exist detection techniques that detect covert channels by mod-
eling the normal network behavior of a monitored host (i.e., potential future vic-
tims) [12,13,14]. These techniques detect a priori adaptation because the choice
of adapting to a specific application does not necessarily match the behavior of
the victim. Thus, the adaptive covert channel would show different network char-
acteristics from the victim traffic. An a priori adaptation technique can avoid
detection if the detection model is known. In this setting, Fogla et al. [15,16]
proposed polymorphic blending attacks (PBA), a technique to adapt shellcode
payloads to fit the statistical representation of normal traffic embedded in the
detection model. However, the detection model is not always available. In this
work, we focus on more advanced techniques that evade detection without know-
ing the detection model details.

Covert channel detection systems mainly rely on two methodologies. (1) Su-
pervised learning approaches analyze the characteristics of benign and malicious
traffic to create a model that can reliably identify and distinguish characteris-
tics between the two groups [17]. This approach is common and also effective,
because the majority of covert channels preserve the same distinctive network
characteristics in its messages. On the other hand, (2) semi-supervised learn-
ing approaches only rely on benign data, and the generated model describes
the common characteristics of benign traffic [12,14]. Although this approach is
usually less precise than the aforementioned one, it can successfully identify un-
known covert channels, when their characteristics differ from benign data used
for training. Nonetheless, both methodologies implicitly rely on the assumption
that malicious traffic shows distinguishing patterns from benign traffic. What
happens if the malicious covert channel takes benign traffic characteristics of its
victim into account to generate its messages?

Victim-aware adaptation (VAA) occurs when malicious channels mimic the
observed victim traffic to bypass detection. Casenove [18] proposed a technique
called polymorphic blending technique (PBT) that is based on PBA [15]. PBT
learns the statistical representation of normal TCP payloads from the victim
traffic. The data to be transmitted is then encoded using byte frequency distri-
bution such that the payload statistical byte distribution is similar to the victim
traffic. However, PBT does not preserve the correct syntax of the application
layer protocol, including its metadata. By substituting bytes in the payload, the
syntax of the messages may be disrupted. Similarly, also PBA does not try to
resemble a message syntactically similar to the victim traffic, but focuses on the
byte frequency distribution. Consequently, detection systems that rely on appli-
cation layer information for detection (e.g., [17,12,14]) could detect PBT due to
corrupted messages (e.g., unparsable syntax) or unrecognizable byte sequences.



Yarochkin et al. [19] propose to use covert channels over different protocols de-
pending on the protocols used by the victim. Although their solution adapts to
the victim, they do not consider to mimic the victim messages, thus their con-
tent would show deviating characteristics from the victim traffic and the covert
channel would be detected.

In this work we investigate the ineffectiveness of state-of-the-art covert chan-
nel detection mechanisms against VAA covert channels, where the attacker mim-
ics the syntax of the victim messages. Although we are not aware of malware
families using VAA covert channels, there exist malware families capable of sniff-
ing and manipulating their victim traffic [20,21]. This suggests that existing mal-
ware already has the technical capabilities to implement VAA covert channels,
and that malware has interest in performing malicious activities using the vic-
tim traffic. Moreover, we explore a deception-based technique to detect VAA
covert channels, which relies on different assumptions than existing detection
method. Our technique is complementary to existing detection methods. The
combination of our proposed technique and existing detection solutions provides
better protection against VAA covert channels than existing solutions used as
standalone techniques.

As part of our investigation of VAA covert channels, we introduce Chameleon,
a toolchain to generate synthetic datasets containing data exfiltration attacks
over VAA covert channels. Chameleon generates exfiltration attacks by mim-
icking legitimate traffic at the application layer. Then, we use the synthetic
dataset to evaluate three HTTP-based detection techniques [14,17,12], which are
based on semi-supervised [14,12] and supervised learning [17]. We focus the ef-
forts of our evaluation on HTTP, because a vast majority of malware implements
its communication channels over HTTP [1,22]. Moreover, from the attacker’s
point of view, the evasion techniques should work even in case a defender has
full access to the plaintext data (e.g., via a TLS-proxy). Our evaluation shows
that existing approaches are not suitable for detecting VAA data exfiltration at-
tacks, because these attacks break the underlying assumptions of the detection
methods. The results show that existing solutions either do not detect the attack
or have a false positive rate above 7%, rendering them impractical in practice.
Finally, we propose HoneyTraffic, a deception-based detection against VAA
covert channels. HoneyTraffic consists of a client-side component that gen-
erates traffic containing honey tokens. When an advanced attacker mimics the
victim traffic, she ends up mimicking honey tokens, which can in turn be easily
detected. This produces inconsistencies that can be detected by our monitor.
Following [23], there are no comparable network-based deception techniques.
We evaluate our approach against the adaptation strategies implemented by
Chameleon in a worst-case scenario. The results show that HoneyTraffic
can detect specific strategies of VAA covert channels. HoneyTraffic makes it
harder for VAA attackers to evade detection, but not impossible.

Our main contribution lies in the implementation of Chameleon and the
evaluation of existing detection solutions. Code and dataset will be made pub-
licly available. VAA covert channels are a serious threat that is hard to detect.
HoneyTraffic is a first attempt to their detection and it allows for the detec-
tion of some, but not all, VAA covert channels, thereby making attackers evasion
more difficult. However, VAA covert channels remain a threat hard to detect.



2 Chameleon

The main goal of our work is to evaluate the effectiveness of VAA covert channels
against existing detection solutions that use benign traffic to learn detection
models. For this purpose, we present Chameleon, a toolchain that generates
traffic samples containing data exfiltration attacks over VAA covert channels.
We use Chameleon to evaluate existing network-based detection solutions. We
introduce Chameleon since we are not aware of malware samples using VAA
covert channels.

The core observation behind Chameleon is the following. Detection solu-
tions, both supervised and semi-supervised, often learn detection models from
the network characteristics of (non-compromised) machines. The network traffic
of a machine is generated by the applications installed on it. Thus, Chameleon
can generate network messages that mimic their application-layer metadata (e.g.,
using same headers and values), and then it can secretly hide data in the mim-
icked messages. Since such messages share the similar characteristics as those
used to learn the detection model, the security monitor will not be able to
effectively detect the covert channel. In other words, Chameleon fits the de-
tection model by mimicking the victim traffic, similarly to PBA [15]. However,
Chameleon does not require access to the detection model and focuses on the
syntax of messages and not their byte distribution.

2.1 Threat Model

We assume the attacker establishes a hidden communication channel to bypass
a security monitor. The attacker controls both client and server, and the mon-
itor can read all communications as plaintext (e.g., via a TLS proxy [24]). The
attacker can observe the network traffic of the compromised host and mimics its
network messages. Hence, we assume the attacker has enough privileges on the
victim to read its network interface. Although this requirement is not typically
trivial to satisfy for an attacker, there are attackers with such capabilities [21,20].
This does not imply that the attacker has system privileges on the compromised
machine. This can occur, for instance, when sniffing tools (e.g., tcpdump) are
given the permission and capability to allow raw packet captures (e.g., setcap
cap net raw,cap net admin). Lastly, in this work we assume that the attacker
only adapts outgoing traffic. We analyze a unidirectional VAA covert channel,
because it is enough to bypass existing detection systems.

2.2 System Overview

Chameleon takes a network trace as input and embeds in it the traffic of a VAA
covert channel. The new trace is used to evaluate detection systems, because it
contains normal traffic, from the original trace, and the exfiltration of data over
a VAA covert channel.

Chameleon works in two steps. The first step is Adaptive Traffic Gener-
ation, which involves a client and a server. The client follows two alternating
phases: during the collection phase it reads the network trace provided as input,
and during the blending phase it generates the adapted network messages. This



terminology was introduced by Casanove [18]. Then, the adapted messages are
sent to the server, which responds to the client. The second step is Traffic Inte-
gration, which involves a set of tools used to modify network traces. These tools
are used to integrate the adapted traffic, stored in a temporary trace, into the
original trace. Currently, Chameleon is implemented to work for HTTP traffic.

We decided to design Chameleon as a “dataset generator”, so we could
generate datasets including VAA covert channels traffic by using only network
captures. This allows us to obtain datasets from machines running different
operating systems and applications, and to easily test defensive mechanisms in
different settings. This makes it also easier for other researchers to generate
VAA covert channel datasets without requiring a dedicated machine on which
Chameleon needs to run. Instead, previously captured network traffic can be
injected with adapted traffic to analyze.

2.3 Adaptive Traffic Generation

As in any covert channel, client and server need to share a set of parameters
before communicating in order to identify the hidden data from the messages.
Moreover, an adaptive client may use a set of message parameters to specify its
way of communicating. Below we discuss the setup parameters, message param-
eters and the client implementation. Since our work focuses on unidirectional
VAA covert channels, where only the client adapts to the victim, Chameleon
implements the server as a listener that returns a default response.

Setup Parameters SP are shared between the adaptive client and server be-
fore any communication is established. These parameters provide the basic in-
formation for the client and the server to identify the hidden data within the
network messages. They are defined as SP = 〈p, e〉. For each network protocol
p, the adaptive client and the server share a list of encoding algorithms e. The
parameter e also contains a delimiter to identify where the hidden data “starts”.

Message Parameters MP are not shared between client and server. They are
used to specify how messages should be crafted in the collection and blending
phases such that they appear to be legitimate messages, while hiding secret infor-
mation. In this work, MP are only set at the client side. Here MP = 〈c, s, l, i, b, a〉,
where c is the timeout of the collection phase; s is the maximum size of the data
to embed in each message (i.e., bit-rate of the covert channel); l is the location
where the exfiltrated data is embedded (e.g., URI, headers, body); i is the delay
between sending out messages; b is the timeout for the blending phase; and a is
the type of application the attacker wants to mimic (e.g., Firefox).

Client Implementation. Figure 1 gives an overview about the process generat-
ing adapted messages in Chameleon. During the collection phase, Chameleon
selects an application a to mimic. All messages from a are collected based on
the User-Agent field. Chameleon stores the list of header fields and the values
associated to each header in the header set and header-value dictionary, respec-
tively. The collected information and the data that needs to be transmitted (e.g.,
file to exfiltrate) are passed to the blending phase, which encodes the data using
scheme e and splits the file into chunks of size s, obtaining a set of data items.
Before each data item is transmitted, a template is generated. A template rep-
resents a set of headers, and their associated values, that aim at mimicking the



victim traffic. An example of template is shown in Figure 1 with green color font.
Headers are chosen randomly from the header set, while the associated values
are randomly chosen from the header-value dictionary. The data item to trans-
mit (i.e., the covert message) is inserted in the location, within the template,
indicated by the parameter l (highlighted in red in Figure 1), thereby generat-
ing the adapted message. Thus, Chameleon inserts data in a single message
location, in order to maximize the mimicked parts of the message. Finally, the
adapted message is sent out to the server using interval i. After b seconds, the
process restarts from the collection phase to mimic the most recent traffic. The
server retrieves the message by identifying the delimited described in the setup
parameter e and extracting the adjacent data.

Our implementations uses HTTP and base64 as setup parameters. Message
parameters MP can be set before running the client and the server. Please note
that whoever establishes a covert channel is also in control of both client and
server behavior. Therefore, an attacker may use the protocol in a way that is
semantically wrong, but she can still communicate successfully. For example, the
client can generate HTTP GET requests for resources that do not exist on the
server, but the server may still provide a valid response (e.g., 200 OK).

2.4 Traffic Integration

The second step Chameleon performs is the integration of the VAA traffic,
observed between client and server, into the original trace provided as input.
First, the traffic of the VAA channel is captured using tcpdump, and it is stored
into a temporary network trace. Then, the IP addresses in the temporary trace
are rewritten according to the victim’s IP contained in the original trace using
tcprewrite. Similarly, the timestamps are rewritten in order to fit the time
period of the original trace, and we achieve this using editcap. Finally, now
that both traces are consistent in terms of IP address and timestamps, we merge
them using mergecap. These tools are part of the Wireshark suite. The final trace
contains both victim’s traffic and the attack, and it is easily labeled, thereby
being ideal for an evaluation of detection systems.

3 Experimental Evaluation

3.1 Dataset

For the generation of the dataset, we need network traces of benign traffic rep-
resenting different hosts, and thus, potential victims. We choose the dataset
published by Sharafaldin et al. [25] for this purpose. The reasons behind this
choice are the following: 1) it contains traffic from multiple hosts over a time
period of a week, allowing defenses to be trained with the traffic of the beginning
of the week, and to be tested on the rest; 2) it contains traffic emulating user
behavior and it contains different type of machines (e.g., servers and worksta-
tions); and 3) it is publicly available, so our generated dataset can be publicly
released, without compromising any user privacy, making our work easier to be
reproduced.

We extracted from the dataset of Sharafaldin et al. [25] all the outbound traf-
fic generated by 9 different hosts. For each host, we obtained 5 days of network
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Fig. 1: Overview of the VAA covert channel implementation by Chameleon.

traffic (from Monday to Friday), where each day of traffic is a single network
trace. For each host, we choose a different set of message parameters MP , which
represents a strategy a VAA covert channel may use to communicate. We ran
Chameleon using each host’s network trace and defining the MP according to
the strategy assigned to the host. Overall, the dataset resulted in 45 pcap traces
containing both our VAA covert channels and hosts traffic. The dataset contains
16.6 GB of network traffic, of which 476 MB (120k HTTP requests) originate
from the adapted communications.

Table 1 lists the message parameters of each strategy applied to each host.
The column file indicates the size of the file we transmitted during the adaptive
communication. The values of l are denoted by B for body, H for a random
header, U for URI parameters and M for a random choice between header and
URI. While the values of a are given as B for browser, N for non-browser, or M
for a mix of both. The strategies represents different exfiltration scenarios. Such
scenarios include data exfiltration of files large 50 Kb and 500 Kb at different
speeds, exfiltration locations, and application types. For instance, strategies for
hosts 8 and 16 wait up to 5 seconds between sending messages, whereas strategies
for hosts 5, 9, and 12 do not wait between attempts at all.

Existing Detection Solutions The three detection solutions are: DUMONT [14],
DECANTeR [12], and HED [17]. We selected these tools from the state-of-the-
art for three reasons: 1) their detection models rely on HTTP traffic character-
istics that include payload and headers, and 2) their detection models leverage
benign traffic information; and 3) they cover both semi-supervised (DUMONT
and DECANTeR) and supervised learning (HED). The implementation of DU-
MONT and DECANTeR are available online, while we obtained the code of
HED from the authors.



Table 1: Mimicking strategies applied in our dataset.

Host ID file c s l i b a
[KB] [s] [B] [s] [s]

5 500 5 128 H 0.00 ∞ M
8 50 5 0-128 U 0-5.00 ∞ B
9 50 5 128 B 0.00 5 M
12 500 5 128 H 0.00 ∞ N
16 50 5 0-128 U 0-5.00 ∞ N
17 500 5 0-128 B 0-1.00 ∞ B
25 500 5 0-128 U 0-0.05 5 B
50 500 5 0-128 H 0-0.05 5 B
51 500 5 0-128 B 0-0.05 5 B

DUMONT generates a detection model for each monitored host, and the
model is a One-class SVM that describes the HTTP network characteristics
according to several numerical features representing different location of HTTP
requests (e.g., headers, URI, Body). DECANTeR models the traffic of each mon-
itored host by fingerprinting installed applications after observing their traffic,
and the fingerprints describe different network features of the application. HED
generates a binary SVM classifier given two sets of traffic, representing “normal”
and covert channel traffic, respectively. The binary SVM relies on more than a
thousand features related to HTTP requests to create the model. We refer the
reader to the original works for additional information on these systems.

Evaluation Setup We evaluate the classification performance of each detection
tool in terms of accuracy (ACC), false positive rate (FPR), true positive rate
(TPR), detected attack (DA) and detected strategy (DS). An attack is detected if
at least one HTTP request is triggered as malicious within a single traffic sample.
A strategy is detected if at least one HTTP request is flagged as malicious within
all the four traffic samples of that specific strategy. We compute the number of
true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN), for the whole dataset.

The detection systems has been evaluated as follows. For DUMONT, we first
train a model for each host using the first half of the benign training data of the
Monday sample. Then, we calibrate the DUMONT model using the the same
amount of malicious and benign data present in the second half of the Monday
sample 4. We test the remaining four samples, from the same host, against the
model and we collect the results. Similarly, for DECANTeR we train the models
using the benign traffic of the Monday sample. Then, we test the remaining
four samples for each host and we collect the results. For HED we train a single
model for all hosts using their Monday samples, and we evaluate it against
the remaining samples. However, if we generate a supervised model from a set
of known VAA malicious samples, we train the model to detect the malicious
samples in the context of their specific victims. Hence, it is not guaranteed that
the same samples are effectively detected in the future, because their traffic may
look different if they affect other victims. Thus, we evaluate HED in two different

4Please note that in the original work [14] there is no clear guidance about the
quantities of data needed for the calibration step.



scenarios representing two deployment assumptions. The first scenario is HEDpk,
assuming HED has partial knowledge of the malicious traffic, thus the training
model contains all benign host traffic but only a subset of malicious traffic. In
our evaluation we randomly excluded four hosts’ malicious traffic (i.e., host 50,
12, 8 and 25 in Table 1). The second scenario, HEDtk, assumes HED has total
knowledge of the malicious hosts’ traffic, so the training model contains all benign
and malicious traffic. HEDpk is a more realistic scenario, because it assumes that
the defender does not know all the characteristics of a VAA attacker beforehand.

3.2 Results

We consider a solution to be effective if it has a true positive rate higher than
70% and a false positive rate lower than 2%. A high TPR means that it is
unlikely that the attack is going to be missed. Thus, in practice a low TPR
can be very costly for a company. A low FPR means the detection solution
rarely triggers false alarms. According to Sommer and Paxson, in their seminal
work about IDSs and machine learning in real environments [26], limiting false
positives must be a top priority of any IDSs. Table 2 shows the overall detection
performance of the evaluated detection solutions for all the 9 strategies. Table 3
shows a detailed overview about detection performance per strategy.

Semi-supervised learning DECANTeR and DUMONT are not effective in
detecting VAA covert channels, as shown in Table 2. The main reason is that
adaptation allows the malware to camouflage its characteristics with those of the
victim. Thus, the malware fits the trained model and breaks the fundamental
assumption of anomaly detection, namely that malware shows different patterns
than benign traffic.

DECANTeR is not effective against Chameleon because its classification
system is based on specific associations of some header fields and values. Since
Chameleon uses existing associations of header fields and values in its tem-
plate, DECANTeR considers adapted messages as generated by installed appli-
cations. Chameleon can exfiltrate data through the URI, Body, Accept, and
other headers, without being detected, as long as the “key” header values (i.e.,
Host, User-Agent, Accept-Language) match the fingerprint values. If data is
hidden within such “key” headers, then DECANTeR likely detects the adapted
traffic. The most successful strategies involved the mimicking of background
applications. The reason behind is that adapted messages had the same head-
ers sequences, same Host values and User-Agent, which are three fundamental
features for background application fingerprinting in DECANTeR. By adapting
to the victim’s traffic, Chameleon completely avoided detection in two cases
(strategies 12 and 16), as shown in Table 3. DECANTeR also performs poorly for
strategies 5 and 9, when the malware randomly adapts to different applications.

DUMONT is not effective against Chameleon because its classification sys-
tem mostly relies on statistical features describing the length and structure of
different parts of a message (i.e., headers, URI and Body), their entropy, and the
average length of header and URI values. The template created by Chameleon
contains data with similar statistical characteristics, because it comes from the
same applications. Thus, the data contained in the template help hiding adap-
tive traffic from detection. Therefore, if Chameleon also hides data in loca-
tions that typically contain large amounts of data such as Body and URI), then



Chameleon is likely to fit the trained length characteristics learned by the
model, and it avoids detection. Overall, DUMONT misses almost a third of the
samples. It misses all the samples for strategies 16 and 9, likely due to the small
amount of data being exfiltrated. Although DUMONT detects some malicious
requests for strategies 5, 8, 25 and 50, the vast majority of malicious requests
are still not detected. This justifies the low accuracy.

Supervised learning HED yields the best results in terms of detection. All
the samples are detected. The extra attack knowledge used to create the model
helps HED to improve its performance. However, the FPR for both scenarios is
2 or 3 time higher than for other solutions, making HED not effective against
Chameleon. In the original paper [17], HED showed a FPR of 0.01% against
non-VAA covert channels. In our evaluation the FPR increases two orders of
magnitude. The reason behind the high FPR is the similar statistical represen-
tations of benign and adapted messages. Templates contain data statistically
very similar to the one used in training, because it is data from the same ap-
plication. Thus, when the model is generated, it is difficult to find a decision
function that can reliably separate the two classes of traffic. Moreover, due to
high number of requests observed in HTTP traffic and the inherent heterogene-
ity of HTTP, HED often misclassifies benign HTTP traffic as malicious. Table 2
shows that HED in its ideal setting HEDtk, where all strategies are known during
training phase, achieves 96% accuracy. The accuracy is not 100% because HEDtk

generates FPs due to the similarities between benign and malicious messages.
However, in the more realistic setting HEDpk, the accuracy is 89%, where only
some strategies are known at training time. This 7% accuracy drop is due to the
lack of knowledge about new adaptive strategies. As shown in Table 3 the true
positive rate is lower for strategies 8, 25, and 50, which were excluded from the
training dataset.

Lessons Learned. Our evaluation shows that existing defensive mechanisms
are not effective against detecting VAA covert channels, because they cannot
effectively detect them while, at the same time, triggering few false alerts. Semi-
supervised learning solutions are not effective against VAA attackers, because
malicious traffic fits the model of benign communication, and thus, malicious
connections are not flagged as anomalies. Supervised learning solutions are not
effective for two reasons. First, the classes in the training dataset are represented
by similar sets of data, thus there is not a clear distinction between the two
classes features, which is a fundamental requirement for supervised approaches
to be effective. Second, the VAA covert channel data used during the training of

Table 2: Overall performance of existing defenses in terms of accuracy (ACC),
false positive rate (FPR) and detected attacks (DA).

Existing Defense
Performance

Acc TPR FPR DA

DUMONT 49% 10% 2% 17/35
DECANTeR 70% 50% 3% 12/35
HEDpk 89% 85% 7% 35/35
HEDtk 96% 93% 7% 35/35



Table 3: Overall performance of DUMONT, DECANTeR, HEDpk and HEDtk

per strategy, in terms of true positive rate (TPR), false positive rate (FPR) and
detected strategies (DS) (× represents a missed strategy).

Strategies DUMONT DECANTeR HEDpk HEDtk

TPR FPR DS TPR FPR DS TPR FPR DS TPR FPR DS

5 0.001 0.01 X 0.50 0.02 X 0.99 0.06 X 0.50 0.02 X
8 0.005 0.01 X 0.18 0.05 X 0.50 0.05 X 0.99 0.07 X
9 0.000 0.01 × 0.09 0.05 X 0.98 0.07 X 0.99 0.07 X
12 0.133 0.03 X 0.00 0.00 × 0.99 0.07 X 0.99 0.05 X
16 0.000 0.01 × 0.00 0.03 × 0.98 0.07 X 0.99 0.07 X
17 0.371 0.03 X 0.51 0.03 X 0.99 0.10 X 0.98 0.09 X
25 0.023 0.01 X 0.61 0.02 X 0.55 0.12 X 1.00 0.10 X
50 0.001 0.03 X 0.78 0.31 X 0.68 0.04 X 0.93 0.14 X
51 0.150 0.06 X 1.00 0.03 X 0.99 0.10 X 0.99 0.05 X

the system may not be representative for successive attacks, since the attacker
mimics the traffic of new victims, which may show different network patterns.
Both issues are present in HED: the first is highlighted by the high FPR, while
the second is described by the accuracy drop between the two HED scenarios
HEDtk and HEDpk.

Limitations. Chameleon has three main limitations. First, it only mimics the
content of network packets and not the interaction between client and server. A
detection mechanism that models client-server interactions may effectively de-
tect Chameleon. However, web traffic is heterogeneous and inconsistent client-
server interactions may be frequent, considering the large volumes of web traffic.
Thus, designing an effective heuristic is non trivial. Second, Chameleon does
not implement the concept of connection state. However, this limitation does
not affect Chameleon over HTTP, because it is challenging to reliably moni-
tor, for detection purposes, HTTP connection states (i.e., Cookies) due to the
high heterogeneity of their usage and values across different web services. Third,
Chameleon can be detected using signatures or dedicated heuristics to identify
specific patterns in the tool implementation. A simple example is to create a
signature to the static server response. As discussed by Houmansadr et al. [6],
this is always possible for defenders to detect mimicking techniques. However,
these detection approaches are easy to evade since they rely on implementation
details rather than on the underlying patterns of the exfiltration technique.

Finally, it may seem trivial to detect Chameleon using heuristics that iden-
tify replicated content in network messages. However, this is not the case due
to some challenges that defenders must take into account: 1) benign applica-
tions regularly generate similar messages over time (e.g., scripts uploading data
or downloading dynamic content), 2) defenders would have to monitor large
quantities of data and keep a detailed historical record for each host; and 3)
Chameleon is a tool that can be configured with different parameters (e.g., in-
crease delay to enforce larger historical analysis for defenders). These challenges
makes it non-trivial to effectively detect VAA covert channels using heuristics
that rely on passive network traffic analysis.



4 Honey Traffic

We introduce the concept of HoneyTraffic, a deception-based mitigation
against VAA covert channels. We propose to turn the table on the attacker and
make the challenging task of detecting VAA covert channel her problem, while
we use her offensive techniques for the purpose of detection.

The intuition of HoneyTraffic is that we can generate network messages
that mimic existing applications and, at the same time, contain secret tokens.
Thus, the attacker, while adapting to the victim’s traffic, includes such tokens in
its messages. A security monitor, which is aware of the tokens and knows how to
identify them, can detect the presence of messages containing tokens generated
by “unknown” clients, thereby detecting the VAA covert channel.

The goal of HoneyTraffic is to detect the class of VAA covert channels
represented by Chameleon, where the attacker mimics existing messages and
embeds the secret data to exfiltrate in one of the message locations. Honey-
Traffic is not intended to detect all possible types of VAA covert channels.
More importantly, HoneyTraffic is not intended to detect covert channels that
do not adapt to the victim. Such threat scenario is already covered by existing ap-
proaches (e.g., [14,12,17] for HTTP). Hence, we consider HoneyTraffic to be
a complementary solution to existing detection approaches. As other deception-
based techniques, such as honeypots, stack canary or canary tokens, Honey-
Traffic relies on the assumption that an attacker cannot distinguish between
fake and real items. Although canary and honey tokens are conceptually similar,
they protect different aspects of the information system. Canary tokens trigger
alerts if decoy files are accessed, while HoneyTraffic triggers alerts if some-
one copied network messages. In case an attacker accesses common files (i.e., not
decoys) and exfiltrates them over an adaptive covert channel, canary tokens do
not trigger alerts, while HoneyTraffic can.

Assumptions We assume there exists a honey client installed on each machine
(i.e., potential victim). The honey client generates network messages mimicking
the machine’s traffic. In other words, the honey client establishes VAA communi-
cation channels. Moreover, we assume there exists a honey server and a security
monitor (e.g., next-generation firewall or NIDS). The monitor is usually already
part of the company’s infrastructure. The honey server can establish secure com-
munications with both the honey client and the security monitor to provide the
setup information. As discussed in Section 2.1, VAA covert channels, such as
Chameleon, assume a strong defenders capable of accessing all communication
in plaintext. Thus, we assume HoneyTraffic to be capable of accessing the
communication in plaintext (e.g, using a TLS proxy).

We assume the attacker compromises a machine where a honey client is in-
stalled, and we assume the attacker is aware of the presence of honey messages.
However, the attacker does not know the list of honey tokens. We consider the at-
tacker to be not capable of running advanced detection heuristics on the infected
machine to identify the presence of honey tokens. It is not realistic to assume
an attacker can run advanced detection heuristics like a host-based intrusion
detection, while trying to hide its presence.



4.1 System Overview

HoneyTraffic is composed by three main components: a client, installed on
each monitored host, a server and a security monitor. We refer to the client
and server as honey client and honey server, respectively. The system works in
two alternating phases: a setup phase and a detection phase. The setup phase is
responsible for delivering the information necessary to run the detection mech-
anism to each component. During the detection phase, the system monitors the
network to spot adaptive covert channels.

Setup Phase. The honey server is the main component during the setup phase.
It is responsible for the generation of all the information needed to run the
detection system. The honey server generates a set of honey tokens, a set of
random IP addresses, the setup and message parameters (SP and MP ), and a
set of honey signatures (e.g., regex) to identify the tokens in the network traffic.
The random IP generation process excludes existing network nodes that may
trigger network errors from existing machines using the chosen IPs, or by network
devices that know these IPs do not exist. This precaution is needed to avoid
attackers being able to easily identify honey traffic. Then, the server securely
communicates the tokens, IP addresses, and setup and message parameters to
the honey client, while it sends the signatures to the security monitor.

The setup phase reoccurs after a specified time period to substitute old tokens
and signatures with new ones. In other words, the system updates regularly its
key detection material. In case the setup phase is repeated after a short time
(e.g., a day), it becomes difficult for an attacker to identify honey tokens.

Honey Client Communications. Upon receiving the information from the
server, the honey client starts collecting information about the machine’s traf-
fic (collection phase). Once enough information is collected, the client creates a
template for its network messages that resembles the machine’s traffic, and it
embeds the honey tokens within the template (blending phase). In other words,
the honey client follows the same process of the VAA covert channel client dis-
cussed in Section 2.3. In this process it uses the SP and MP parameters provided
by the honey server. Lastly, the client spoofs the destination IP of its messages
using one of the addresses provided by the server, and it sends the messages.

Detection Phase. Once the security monitor receives the signatures from the
honey server, it starts monitoring the network traffic. Whenever the security
monitor identifies a honey token (signature hit), it redirects the message to
the honey server for further inspection. Assuming the tokens are unique strings
generated by the honey client, which is a common assumption in signature-based
detection, a signature hit can be triggered for two reasons: either the token was
included by the honey client or from a malicious adaptive application. If the
message has as destination one of the random IP addresses generated during the
setup phase, then the message is generated by the honey client. Otherwise, the
message is generated by an adaptive application. Since the attacker’s goal is to
communicate with servers she controls, it is very unlikely one of her destinations
matches with one of the randomly generated IP addresses.

In case the message is identified as originating from the honey client, the
server answers with a standard response. It is important that the responses are



GET /pypi/v/dpkt.svg HTTP 1.1

Host: img.shields.io
User-Agent: Mozilla/5.0 ... Firefox 54.0
Accept: */*
Accept-Languate: en-US;q=0.5,en;q=0.3
Accept-Encoding: gzip, deflate
Cookie:__cfduid=dce101b3e09a9a09d5dbf
2afed17dcdc71413792427910
Connection: keep-alive

GET /pypi/adlogin_page/v/dpkt.svg HTTP 1.1

Host: img.shields.io
User-Agent: Mozilla/5.0 ... Firefox 54.0
Accept: */*
Accept-Languate: en-US;q=0.5,en;q=0.3
Accept-Encoding: gzip, deflate
Cookie:__cfduid=dce101b3e09a9a09d5dbf2afe
d17dcdc71413792427910; timestamp=13 Nov 
2018; 10:00 
Connection: keep-alive
 a) b)

GET /pypi/adlogin_page/v/dpkt.svg HTTP 1.1

Host: img.shields.io
User-Agent: Mozilla/5.0 ... Firefox 54.0
Accept: */*
Accept-Languate: en-US;q=0.5,en;q=0.3
Accept-Encoding: gzip, deflate
Cookie:__cfduid=RXVybyBJRUVFIFMmUCAyMD
E4IFN1Ym1pc3Npb24h 
Connection: keep-alive
 

c)

Fig. 2: Example of HoneyTraffic. Figure 2 a) represents an example of a
message from an existing application. Figure 2 b) depicts a honey message,
which mimics an existing application but also embeds the honey tokens (in red).
Figure 2 c) shows a malicious message that adapts to the victim’s traffic, which
includes its secret data (in blue) and an undetected honey token (in red).

not static and look like legitimate traffic, to avoid that the attacker easily iden-
tifies honey communications. The response is needed because the IP is spoofed,
and a real destination is not reached. In case the message is considered malicious,
the server triggers an alert.

4.2 Example of Honey Traffic

Let us assume the honey server generates three different tokens: 1) ”/adlo-
gin page/”, as a subfolder of a URI path; 2) ”timestamp: 13 Nov 2018; 10:00”, as
a COOKIE parameter; and 3) ”686897696a7c976b7e”, as a ETAG value. The honey
server also generates: i) a list of fake destination IP addresses [192.168.1.100,
23.45.21.32, 142.59.23.1]; and ii) signatures for a NIDS to identify each honey
token. For instance, using Snort syntax, the following can be a signature for
the first token: alert tcp any any -¿ any 80 (msg:”HONEY token 1”; con-
tent:”/adlogin page/”; http uri; sid:2000001;). The honey tokens, signatures and
list of fake destination IPs are shared with the honey client and the NIDS.

Now assume that during the detection phase the honey client mimics a mes-
sage of an existing application (Figure 2a), and it embeds two different honey
tokens in the message. The message is then sent over the network to the fake
address: 23.45.21.32. Figure 2b shows how the message generated by the honey
client may look like. Next, the security monitor, which analyzes each single mes-
sage, finds two signature matches with the honey client, one per token. The
monitor forwards the message to the honey server, which verifies that the desti-
nation IP is part of the set of random destination IPs generated during the setup
phase. Hence, the message is considered to be generated by the honey client.

Now let us assume a malware uses an VAA covert channel to communicate
with its server with IP 123.23.67.97. The malware sniffs the victim’s traffic,
and it observes the messages shown in Figure 2a and Figure 2b. It generates
an adapted message, and it embeds the data to exfiltrate in the Cookie (see
Figure 2c), and it sends it to 123.23.67.97. In this scenario, the security monitor
finds one signature, because the token in the URI (i.e., ”/adlogin page/” in red
in Figure 2c) is present in the message. The monitor forwards the message to the
honey server, which marks the message as malicious because it has a destination
address that does not match with those created during the setup phase.



4.3 Generating Honey Tokens

HoneyTraffic is an effective defensive mechanism against VAA attackers, if
the honey tokens cannot be reliably detected by an attacker. Thus, a honey token
must be a sequence of bytes that is unlikely to appear in traffic generated by
other applications. These sequences are not difficult to generate.

Although there are several possibilities to generate tokens, the best loca-
tions are those headers that are commonly used, but are often associated with
different values. As analyzed by Borders and Prakash [27], a fixed fraction of
HTTP connections contain high entropy data. Thus, it is difficult even for an
advanced attacker to discriminate whether the header values contains tokens or
just benign traffic. The headers that are commonly used in HTTP and have such
properties are: Host, Cookie, Referer, Body and URI. For example, for Host
we can generate a fake subdomain, or for the Referer we can generate a fake
URL that was never requested before. These values are likely unique in the traf-
fic. Other headers that can be used for honey tokens are: time-based headers
(e.g., If-Modified-Since, If-Unmodified-since, Date), where the tokens are
represented by timestamps, or headers related to check resources updates (e.g.,
If-Match, If-None-Match, ETAG), where the tokens are represented as random
sequences of alphanumeric characters.

Honey tokens can be automatically generated by the honey server. It is im-
portant that the server is aware of the expected syntax for the header value, to
avoid that malware notices simple format inconsistencies. Following the afore-
mentioned examples, the server can use English words as subdomains to create
Host tokens or as string in the URI path (e.g., Figure 2b). Considering the large
set of choices a defender has to generate honey tokens, the fact that tokens can
be generated to be nearly indistinguishable from normal traffic, and the limited
detection capabilities of the attacker, it is unlikely the attacker can consistently
detect honey tokens. She would have to correlate the content of many messages,
and identify patterns within a limited amount of time, because the setup phase
periodically introduces new tokens. To complicate the detection even further, the
honey client can use each token only once (i.e., one-time tokens), reducing the
chances for the attacker to identify string patterns. In our analysis in Section 4.4
we discuss how much one-time tokens costs to the honey client. A single attacker
mistake in judging the presence of a honey token costs her the detection.

4.4 Evaluation of Honey Traffic

HoneyTraffic relies on the assumption that, sooner or later, an attacker
adapts to messages including honey tokens. Thus, the detection of VAA covert
channels is not deterministic but probabilistic. In order to evaluate Honey-
Traffic, we make the following assumptions: 1) the attacker and the honey
client mimic the traffic of a browser application, namely the target application;
and 2) the honey client hides honey tokens into a fixed number of header values.

Attackers are more likely to adapt to browser traffic, because browsers gen-
erate a lot of traffic, thus it is easier for the attacker to hide. Moreover, browsers
represent the worst-case scenario for HoneyTraffic in terms of traffic over-
head. The large volumes of browser traffic force honey clients to generate more



traffic to detect a VAA attacker. Although we analyze HoneyTraffic for a
specific application, in practice, HoneyTraffic should be generated for all
communicating installed applications.

Applications can use different sets of headers during their communication.
However, there is always a subset of headers that is used in all applications’
network messages [12]. Thus, a honey client can use such headers to hide tokens
in it. For example, browser traffic always contains a URI (i.e., needed to retrieve
a web resource) and a Host value (i.e., domain to contact). Both headers contain
data that changes very often, making it hard for an attacker to detect potential
tokens. For this reason, we believe it is realistic to assume that a honey client can
hide tokens in a fixed set of headers. Specifically, following the aforementioned
example, we assume the honey client hides tokens in two different headers.

Attacker Strategies The probability of detecting a VAA covert channel de-
pends on the strategy an attacker uses to mimic application traffic. The attacker
can mimic a message according to two different strategies: the attacker creates
messages by combining the list of elements (e.g., headers and header values)
that were previously observed from the target application, and substitutes one
header value with her secret data; or the attacker copies one of the previously
observed messages from the target application entirely, and hides her secret data
in one of the message headers. Due to a lack of space, we discuss the evaluation
of the former, which is the same used by Chameleon. Since we assume an at-
tacker cannot distinguish honey traffic from normal traffic, the attacker chooses
the values to adapt at random. For this reason, our evaluation assumes that the
attacker mimics messages, or elements, uniformly at random.

Adaptation per Header. Let us assume the attacker runs a collection phase
for a period of time c, where it collects: i) a header set L = {L1, . . . , Lj} where
Li represents a list of headers; and a list of values Vhead containing all the
values associated with header head in the observed traffic. Vhead also contains
the observed honey tokens generated for header head during c, which we define
as thead. After choosing a list of headers Li, the attacker generates an adapted
message by randomly choosing a header value from Vhead for each corresponding
head ∈ Li. Then, the probability p to detect an adapted malicious message with
this strategy is p = 1−

∏
head∈Li

(1− thead

|Vhead| ).

The probability of detecting an attacker after sending x messages, during
blending phase, can be modeled as a binomial distribution, and it can be defined
as P (detection within x messages) = 1− (1− p)x.

Parameters We now evaluate the effectiveness of honey traffic assuming the
target application is a browser. First, we collected one hour of browsing activities
using BurpSuite (e.g., streaming videos in the background and moderate web
browsing) to estimate the number of requests an active browser may generate.
We observed that roughly 2,200 requests were generated.

Consequently, within a collection timeout c = 30s, the number of requests
a browser generates, which is also collected by the attacker, is 19. Therefore,
we defined the number of application messages within c as Ac = 19. We choose



a short collection timeout because malware may want to communicate closely
to the benign application to avoid suspicion. Since we assume there are specific
headers always present in application traffic, we define |Vhead| = A + thead,
because the values observed from a single header contains all those generated by
the normal application A and those generated by the honey client containing a
token thead. Finally, we evaluate our mitigation according to different amounts
of honey messages generated during c. We define four cases, where the honey
client generates 1, 2, 5, and 10 messages. The network overhead introduced
by the honey client for these values is approximately 5%, 10%, 20% and 50%,
respectively (e.g., for 19 browser messages in c, we introduce 1 honey message,
which represent roughly the 5% of the browser traffic).

We want to remark that the detection probabilities are still influenced by the
number of messages generated by the target application and the honey client,
the collection timeout and how tokens are hidden. We evaluate HoneyTraffic
with the parameters mentioned above to estimate the practicality of this method.

Results The results show that HoneyTraffic can detect the attacker after
few messages. The attacker can be detected with 80% probability after she sends
16 messages, costing only 1 message every 30 seconds. The increase of honey
messages allows a faster detection. The results are shown in Figure 3. Thus, it
becomes problematic for an attacker to persist on the host, because she cannot
perform many malicious operations before she is detected. Additionally, another
important characteristic of honey traffic is that it generates almost no false
positives, as long as tokens are unique in the traffic.

By multiplying the number of honey messages (within c) with the average
size of an HTTP request, we can estimate how many kB/s our solution costs.
Let us assume a pessimistic scenario, where the average size of a message is
1kB. By using 0.03kB/s (i.e., 5% overhead, 1 request in 30 seconds) of extra
bandwidth, the attacker is detected with 90% probability after 23 messages.
The overall daily cost in terms of bandwidth is 2.59MB, for each browser we
want to mimic in the network, and this is a worst-case scenario because we
assume the browser is active 24 hours. If we consider a 50% overhead, which is
the pessimistic scenario in terms of bandwidth overhead, the bandwidth daily
cost for a browser is 28.5MB.

The storage costs for the honey client are also relatively low. We evaluate
a scenario where the setup phase waits one week to refresh the tokens, each
token is used only once and is 10 bytes long. These are pessimistic settings since
many tokens should be generated and hold in memory for a long time. For a
bandwidth overhead of 50%, storing the tokens approximately costs 4,032 kB. A
lower bandwidth of 5% has 403 kB of memory costs. Table 4 shows the costs in
terms of storage of the honey traffic. In case the setup phase is executed more
often, the memory costs decreases. For instance, a setup phase refreshing every
day would cost 576 kB in case of a 50% bandwidth overhead.

This evaluation makes rough estimates about the performance of Honey-
Traffic, and it shows that HoneyTraffic is a practical solution against spe-
cific VAA attackers strategies with negligible false positive, low bandwidth over-
head and memory costs. As discussed in the section below, HoneyTraffic does
not cover all the use cases of VAA covert channels, thus it cannot be considered a



Table 4: Storage costs for the honey client, assuming each token is used only
once (i.e., one-time tokens) and the setup phase is repeated once a week. We
consider tokens to have an average size of 10 bytes.

Bandwidth Overhead Unique Tokens Storage Size [kB]

5% 5760 403
10% 11520 806
20% 28800 2,016
50% 57600 4,032

standalone solution. Note that this evaluation assumes the attacker adapts every
time she sends a message. In case the attacker would send multiple messages with
the same collected data, our evaluation still holds, but the X-axis of Figure 3
should be interpreted as “adaptation attempts”, instead of messages. Finally,
note that this analysis assumes browser messages are evenly spread across dif-
ferent collection phases. We do not expect this to happen in practice, because
the browser generates bursts of messages. Thus, some collection phases are more
favorable to the attacker and some to the defender.

4.5 Evasion of Honey Traffic

Honey traffic cannot be proven secure, because we assume the attacker can run
with high privileges, so, in theory, the malware can do anything on the com-
promised host. For instance, the attacker may be able to identify the process
of honey client at system level and avoid mimicking packets that it generates.
Nonetheless, we believe an attacker, especially if automated such as malware,
faces severe difficulties in identifying the honey client, especially if properly hid-
den (e.g., by using rootkit techniques). The setup phase of the honey traffic is
also a limitation, because the malware can get to know the list of tokens that will
be used. However, also in this case, the malware must be aware of the presence
of the honey client on the system. Moreover, it should also be able to intercept
and interpret the messages provided by the server.

Malware can evade honey traffic by generating its own traffic. However, by
doing so the malware is not adapting, thus it would be detected by already exist-
ing techniques, as we discussed in Section 4. Alternatively, malware may try to
corrupt, or even delete, the honey tokens by overwriting header values with valid
strings, such that honey messages are never detected. This type of attacker is
not represented by Chameleon, and thus it is not covered by HoneyTraffic.
Nonetheless, it remains unclear whether an attacker substituting several header
values with randomly generated valid strings can still be considered “adaptive”.
The generation of these strings may introduce distinctive patterns that could be
modeled by existing covert-channel detection solutions, thereby losing the ad-
vantages of adaptation. Due to these uncovered VAA strategies, HoneyTraf-
fic cannot be considered a standalone solution to detect VAA covert channels.
However, it can complement existing detection methods to make evasions more
difficult for VAA attackers and provide overall better network protection.
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Fig. 3: Probability of VAA malware being detected by the number of messages
it sends. The percentage values represent the overhead of honey messages, com-
pared with the amount of browser traffic.

5 Conclusions

In this paper, we presented Chameleon, a (to be released) toolchain to gener-
ate synthetic datasets containing adaptive covert channels—attacks that aim at
mimicking the legitimate traffic generated by the victim while hiding secret infor-
mation without being detected by a security monitor. Leveraging Chameleon,
we showed that current detection approaches are not suitable for such advanced
attacks. In fact, adaptive covert channels break their underlying assumption that
malicious traffic presents distinctive patterns from benign traffic. We then pro-
posed HoneyTraffic, a deception-based detection technique, which can com-
plement existing detection mechanisms to make it harder, but not impossible,
for attackers to evade detection using VAA covert channels.
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