
ShieldFS: A Self-healing,
Ransomware-aware Filesystem

Andrea Continella, Alessandro Guagnelli, Giovanni
Zingaro, Giulio De Pasquale, Alessandro Barenghi,

Stefano Zanero, Federico Maggi

Politecnico di Milano

12-08-2016

Key Takeaways

2

● The way ransomware interacts with the filesystem is
significantly different in comparison to benign
applications

● We can detect ransomware behaviors by monitoring the
filesystem activity and the usage of crypto primitives

● Mere detection is insufficient
○ Stopping a suspicious process may be too late
○ We need to protect users’ data, reverting the

effects of ransomware attacks.

2016 the "year of extortion"

3

How to Deal With Ransomware?

4

● Is a classical antivirus enough?
○ Unfortunately no
○ Signatures must be updated
○ Executables are obfuscated and encrypted

● Why don’t we monitor Crypto API calls?
○ Malware implement own crypto functions or use

libraries
● The OS should be able to detect malicious ransomware

○ Look at the Filesystem’s activity!

[1] A.Kharraz, W. Robertson, D. Balzarotti, L. Bilge, E. Kirda, Cutting the Gordian Knot: A Look Under the Hood of Ransomware Attacks, DIMVA 2015
[2] A. Kharaz, S. Arshad, W. Robertson, E. Kirda, UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware, USENIX Sec 2016
[3] N.Scaife, H. Carter, P. Traynor, K. Butler, CryptoLock (and Drop It): Stopping Ransomware Attacks on User Data, ICDCS 2016

FS Activity Monitor

● Develop a Windows Kernel module to
monitor and log the file system activity
○ Windows Minifilter Driver
○ Log IRPs (I/O Request Packets)

● Run ransomware samples and collect data
about the activity of the FS during infections

● Distribute IRPLogger to 11 clean machines
○ Anonymized data about the activity of the

FS during “normal” clean executions
■ 1 months worth of data
■ ~1.7 billion IRPs
■ 2,245 distinct applications

5

Hardware

Storage Driver

File System

Filter Manager

I/O Manager

Kernel mode
User mode

Ransomware

Filter Manager APIs

6

CONST FLT_OPERATION_REGISTRATION Callbacks[] = {
 { IRP_MJ_CREATE,
 0,
 PreCreateOperationCallback,
 PostCreateOperationCallback },

 { IRP_MJ_CLOSE,
 0,
 PreCloseOperationCallback,
 PostCloseOperationCallback },

 { IRP_MJ_READ,
 0,
 PreReadOperationCallback,
 PostReadOperationCallback },

 { IRP_MJ_WRITE,
 0,
 PreWriteOperationCallback,
 PostWriteOperationCallback },
}

FltRegisterFilter (DriverObject,
 &FilterRegistration,

 &Filter);

Statistics of the collected data

7

Analysis Environment

8

VirtualBox

Cuckoo Sandbox

Windows 7 VM

Virtualized
Hardware

File System

IRPLogger

I/O Manager

Kernel mode
User mode

Ransomware

Training Dataset

9

● 383 samples of 5 different families from VirusTotal

Ransomware vs Benign programs

10

(1) #Folder-listing (2) #Files-Read (3) #Files-Written

(4) #Files-Renamed (5) File type coverage (6) Write-Entropy

Benign Ransomware

Cumulative Distribution Functions

ShieldFS
Self-healing Filesystem

11

ShieldFS: Approach

12

Detection Models

● We propose a set of custom classifiers trained on the
filesystem activity features

● One set of models, called process centric, each
trained on the processes individually

● A second model, called system centric, trained by
considering all the IRP logs as coming from a single,
large “process” (i.e., the whole system)

● ShieldFS adapts these models to the filesystem usage
habits observed on the protected system

13

Multi-tier Incremental Models

● Split the data in intervals, or ticks, defined by the
fraction of files accessed by the monitored process

● Multi-tier incremental approach
○ Global Model takes care of typical ransomware
○ Model i handles code injection cases

14

log (% accessed files)

Model 1 Model 1 Model 1 Model 1 Model 1

Model 2 Model 2

Model 3 Model 3

Model 1

Model 2

Global Model

tie
rs

Long-term
horizon

Short-term
horizon

CryptoFinder

● Block ciphers expand the key in a sequence of values,
known as the key schedule, used during each round

● The key schedule is deterministic and known!
● It is materialized in memory during all the encryption

procedure
● Look for valid schedule to detect usage of crypto!

15

ShieldFS Architecture

16

Process 1

address space

Process 2

address space . . .

Process 1 Process 2 ...

I/O Manager (minifilter driver interface)

open("file.txt") read(fp1) ... User space

Kernel space

Virtual memory

ShieldFS Architecture

17

Process 1

address space

Process 2

address space . . .

Process 1 Process 2 ...

I/O Manager (minifilter driver interface)

Process centric
model 1 ...Process centric

model 2

open("file.txt") read(fp1) ...

System centric model

I/O Request Packets (IRPs)

"process 1 is suspicious"

User space

Kernel space

Virtual memory

Feature
values

D
etector

ShieldFS Architecture

18

Process 1

address space

Process 2

address space . . .

Process 1 Process 2 ...

I/O Manager (minifilter driver interface)

Process centric
model 1 ...Process centric

model 2

open("file.txt") read(fp1) ...

System centric model

C
ry

pt
oF

in
de

r

I/O Request Packets (IRPs)

"process 1 is suspicious"

User space

Kernel space

Virtual memory

"s
ea

rc
h

fo
r c

ry
pt

o
ke

y
sc

he
du

le
"

Feature
values

D
etector

ShieldFS Architecture

19

Process 1

address space

Process 2

address space . . .

Disk drive

Process 1 Process 2 ...

I/O Manager (minifilter driver interface)

Process centric
model 1 ...Process centric

model 2

"process 2 is benign", "process 1 is malicious: kill it and restore files"

open("file.txt") read(fp1) ...

System centric model

C
ry

pt
oF

in
de

r

I/O Request Packets (IRPs)

"process 1 is suspicious"

User space

Kernel space

Virtual memory

Shadow drive

"delete process 2 file copies""restore process 1
files copies"

"s
ea

rc
h

fo
r c

ry
pt

o
ke

y
sc

he
du

le
"

Shielder

Feature
values

D
etector

Automatic File Recovery Workflow

20

Monitor &
COW on first write

Unknown

DetectorMalicious

Restore original copies

Benign

Clean old copies

Start

Experimental Results

21

Detection Accuracy

22

False Positive Evaluation

FPR with One-machine-off Cross Validation

23

Detection and Recovery Capabilities

● 305 unseen samples (from VT) of 11 different
ransomware families
○ 7 new families, not present in the training dataset

● Files protected: always 100%
○ Even in case of missed detection

● Detection rate: 298/305, 97.70%

24

System Overhead

25

Perceived Overhead

26

Storage Overhead

27

Limitations & Future work

● Susceptibility to targeted evasion
○ Mimicry attacks
○ Multiprocess Malware

● Cryptographic primitives detection evasion
○ Intel AES-NI extensions
○ Support other ciphers

● Impact on the performance
○ Perform the COW at the block disk level

28

Conclusions

29

● Ransomware significantly differs from benign
software from the filesystem’s viewpoint
○ first, large-scale data collection of IRPs generated by

benign applications
● ShieldFS creates generic models to identify

ransomware behaviors
○ Filesystem activity
○ Use of symmetric crypto primitives

● Pure detection is not enough
○ ShieldFS applies detection in a self-healing virtual

FS able to transparently revert the effects of
ransomware attacks, once detected

Thank you!
Questions?

andrea.continella@polimi.it

 @_conand

http://shieldfs.necst.it/

http://shieldfs.necst.it/
http://shieldfs.necst.it/

