
Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria

Doctoral Programme In Computer Science and Engineering

Defending from Financially-Motivated
Software Abuses

Doctoral Dissertation of:
Andrea Continella

Advisor:
Prof. Stefano Zanero

Co-Advisor:
Federico Maggi

Tutor:
Prof. Andrea Bonarini

Chair of the Doctoral Program:
Prof. Andrea Bonarini

2017 – XXX

mbare was here!

Abstract

Software is involved in every aspect of our world, from our homes to large enter-
prises, and, in particular, it manages our data. As a consequence, software abuses can
drastically impact our lives, for instance causing substantial �nancial losses or a�ect-
ing people’s privacy. This raised the attention of cybercriminals, who found in this
scenario a lucrative business. In fact, in the past twenty years the motivation behind
the cybercriminals’ modus operandi has changed. No longer searching only for no-
toriety and fame, they have turned their attention to �nancial gain. Indeed malicious
software, “malware,” is one of the most dangerous Internet threat nowadays.

This dissertation details our research on the analysis and detection of the current
software abuses, with the aim of protecting users from such threats. Speci�cally, we
focus on three main threats, which have been the cause of billion dollars losses in
the past years. First, we concentrate on information-stealing malware, also known as
“banking Trojans.” The purpose of these Trojans is to steal banking credentials and
any other kind of private information by loading code in memory and hooking the
network-related operating-system APIs used by web browsers. Second, we focus on
a major class of malware, known as ransomware, which encrypts �les, preventing
legitimate access until a ransom is paid. Finally, we analyze the privacy issues in the
mobile world by studying the problem of privacy leaks. Mobile apps are notorious for
collecting a wealth of private information from users. Such information is particularly
attractive. For instance, cybercriminals are known to sell users’ private information
on the underground markets, and advertisement libraries massively collect users’ data
to illicitly increase their pro�ts.

Our contributions regarding banking Trojans focus on extracting robust, behav-
ioral signatures of their malicious behavior, by combining web-page di�erential anal-
ysis and memory forensics techniques. The produced signatures can then be used, on
the client side, to detect such Trojans in a more generic way, independently from their
speci�c implementation, and protect victims’ machines.

Our contributions regarding ransomware focus on designing behavioral detection
models and proposing a novel defense mechanism to mitigate its e�ectiveness by
equipping modern operating systems with practical self-healing capabilities. We de-
signed our detection models after an analysis of billions of low-level, I/O �lesystem re-
quests generated by thousands of benign applications, which we collected from clean
machines in use by real users for about one month.

Our contributions regarding mobile privacy leaks focus on proposing a novel, ob-
fuscation-resilient approach to detect privacy leaks by applying network di�erential
analysis. To make di�erential analysis practical, our approach leverages a novel tech-
nique that performs root cause analysis of non-determinism in the network behavior
of Android apps.

I

Sommario

Oggigiorno il software è coinvolto in ogni aspetto del nostro mondo, dalle nostre case
alle grandi industrie, ed, in particolare, gestisce i nostri dati. Di conseguenza, abusi
del software possono avere un impatto drastico sulle nostre vite, ad esempio causando
ingenti perdite economiche o violando la privacy delle persone. Tutto ciò ha attirato
l’attenzione dei cybercriminali, che hanno trovato in questo scenario un business lu-
crativo; negli ultimi venti anni le motivazioni del modus operandi dei cybercriminali
sono cambiate, infatti essi non cercano più solamente notorietà e fama, ma hanno ri-
volto la loro attenzione a guadagni illeciti. Difatti oggi il software malevolo, “malware,”
è una delle minacce più pericolose di Internet.

Questa tesi illustra le nostre ricerche sull’analisi e la rilevazione degli attuali abu-
si del software, allo scopo di proteggere gli utenti da tali minacce. In particolare, ci
concentriamo su tre principali minacce, che sono state la causa principale di perdite
di miliardi di dollari negli ultimi anni. Innanzitutto, ci concentriamo su information-
stealing malware, noti anche come “banking Trojans.” L’obiettivo di questi Trojans è
quello di rubare le credenziali bancarie e qualsiasi altro tipo di informazione privata
caricando codice malevolo in memoria ed intercettando le chiamate alle API di rete
utilizzate dai browser web. In secondo luogo, ci concentriamo su una grande classe di
malware, conosciuta come “ransomware,” che cifra i �le impedendone l’accesso legit-
timo �no al momento in cui non viene pagato un riscatto. In�ne, analizziamo le pro-
blematiche della privacy nel mondo mobile studiando il problema dei privacy leaks. Le
app mobile sono note per raccogliere un gran numero di informazioni riservate degli
utenti; tali informazioni hanno, dal punto di vista economico, un grandissimo valore.
Ad esempio, i criminali informatici sono noti per vendere informazioni private degli
utenti sui mercati underground, e le librerie pubblicitarie raccolgono massicciamente
tali dati degli utenti per incrementare illecitamente i loro pro�tti.

I nostri contributi riguardo i banking Trojans si concentrano sull’estrazione di ro-
buste signature comportamentali, combinando web-page di�erential analysis con tec-
niche di ispezione forense della memoria. Le signature prodotte possono quindi essere
utilizzate, sul lato client, per individuare tali Trojan in un modo più generico ed indi-
pendentemente dalla loro speci�ca implementazione, così da proteggere le macchine
degli utenti.

I nostri contributi relativi a ransomware si concentrano sulla progettazione di mo-
delli di rilevamento comportamentali e di un nuovo meccanismo di difesa per mitigare
l’e�cacia di questi attacchi; per fare ciò abbiamo dotato i moderni sistemi operativi di
funzionalità di auto-guarigione (self-healing). Abbiamo progettato i nostri modelli di
rilevazione dopo un’analisi di miliardi di operazioni I/O a basso livello sul �lesystem,
generate da migliaia di applicazioni benigne, che abbiamo raccolto da macchine pulite

III

in uso da parte di utenti reali per circa un mese.
I nostri contributi su mobile privacy leak si concentrano sulla proposta di un nuovo

approccio per rilevare privacy leak in modo resiliente a tecniche di o�uscamento, ap-
plicando network di�erential analysis. Per rendere pratico l’uso della di�erential ana-
lysis il nostro approccio sfrutta una nuova tecnica che esegue un’analisi delle cause
principali di non-determinismo nel comportamento di rete delle applicazioni Android.

IV

Contents

1 Introduction 3
1.1 Todays’ Security Threats . 5
1.2 Original Contributions . 5

1.2.1 Banking Trojans Analysis and Detection 6
1.2.2 Protection from Ransomware Attacks 6
1.2.3 Mobile Privacy Leaks Detection 7

1.3 Document Structure . 7

2 Analyzing and Detecting WebInject-based Information Stealers 9
2.1 Background on Information Stealers . 10

2.1.1 The underground economy . 10
2.1.2 Man in the Browser attacks and WebInject 11

2.2 State of the Art and Research Challenges 12
2.2.1 Information Stealers Analysis and Detection 13

2.3 Approach Overview . 13
2.4 Application Scenarios . 15

2.4.1 Detecting WebInjects through Live Memory Inspection 16
2.5 System Design & Implementation . 19

2.5.1 Phase 1: Data Collection . 19
2.5.2 Phase 2: Data Processing . 20
2.5.3 Phase 3: Signatures Generation 21
2.5.4 Implementation . 22

2.6 Experimental Results . 23
2.6.1 Dataset . 23
2.6.2 Delayed activation . 24
2.6.3 False Di�erences discussion . 24
2.6.4 Missed Di�erences discussion 26
2.6.5 Results of memory analysis . 27
2.6.6 Performance . 27
2.6.7 Distributed crawling experiment 28

2.7 Limitations . 29
2.8 Concluding Remarks . 30

3 Protecting from Ransomware Attacks 33
3.1 Low-Level I/O Data Collection . 35

3.1.1 Filesystem Sni�er Details . 35
3.1.2 Ransomware Activity Data Collection 36

V

Contents

3.1.3 Filesystem Activity Comparison 37
3.2 Approach and Methodology . 37

3.2.1 Ransomware FS Activity Detection 37
3.2.2 Cryptographic Primitives Detection 39
3.2.3 Automatic File Recovery Work�ow 40

3.3 ShieldFS System Details . 41
3.3.1 Ransomware FS Activity Detection 41
3.3.2 Cryptographic Primitives Detection 43
3.3.3 Automatic File Recovery . 43

3.4 Experimental Results . 45
3.4.1 Detection Accuracy . 45
3.4.2 Protection of Production Machines 47
3.4.3 Detection and Recovery Capabilities 47
3.4.4 System Overhead . 48

3.5 Discussion of Limitations . 50
3.6 Related Works . 52
3.7 Concluding Remarks . 52

4 Detecting Obfuscated Privacy Leaks in Mobile Applications 55
4.1 Motivation . 57
4.2 Sources of Non-Determinism . 59
4.3 Approach . 59

4.3.1 Network Behavior Summary Extraction 60
4.3.2 Di�erential Analysis . 63

4.4 System Details . 64
4.4.1 Apps Environment Instrumentation 64
4.4.2 Network Setup . 65
4.4.3 Network Behavior Summary . 66
4.4.4 Modifying Sources of Private Information 66
4.4.5 Di�erential Analysis . 67
4.4.6 Risk Analysis . 68

4.5 Experimental Results . 69
4.5.1 Experiment Setup . 69
4.5.2 Datasets . 70
4.5.3 Characterizing Non-Determinism in Network Tra�c 70
4.5.4 Comparison with Existing Tools 72
4.5.5 Privacy Leaks in Popular Apps 74
4.5.6 Case Studies . 75
4.5.7 Performance Evaluation . 76

4.6 Limitations and Future Work . 76
4.7 Related Work . 78
4.8 Concluding Remarks . 80

5 Conclusions 81

Bibliography 83

VI

List of Figures

1.1 Common cyber banking fraud scheme 4

2.1 Example of API hooking. 11
2.2 High level view of the Injection mechanism 12
2.3 Example of a real injection on the home page of online.citibank.com. 12
2.4 Example of a real WebInject rule . 13
2.5 Classi�cation of the 694 extracted regexes. 14
2.6 Example of a generated signature for a given URL and sample 15
2.7 Application scenariosm . 16
2.8 Architecture of Iris. 17
2.9 Prometheus: Overview of a sample analysis. 20
2.10 False Di�erence Rate depending on ε 25
2.11 False Di�erence Rate depending on the number of VMs 26
2.12 Zarathustra’s false di�erences for an increasing number of clean VMs. 26
2.13 Speed and Scalability of Prometheus 27
2.14 Trade-o� between Performance and False Di�erence Rate 28

3.1 ShieldFS shadowing approach . 35
3.2 Example of the use of incremental models 40
3.3 High-level overview of ShieldFS . 42
3.4 10-fold Cross Validation: process- vs. system-centric detectors. 46
3.5 10-fold Cross Validation: with and without the multi-tier approach . . 47
3.6 Micro Benchmark: Average overhead 49
3.7 Perceived overhead introduced by ShieldFS 50

4.1 Example of code obfuscating a privacy leak 58
4.2 High-level overview of Agrigento . 61
4.3 Example of how Agrigento performs its analysis in two phases 62
4.4 Example of how Agrigento builds a decryption map 65
4.5 Tree-based network behavior summary 66
4.6 CDF of the number of runs required for convergence 71
4.7 Trivial di�erential analysis vs. Agrigento 71
4.8 InMobi and ThreatMetrix case studies 76

VII

List of Tables

2.1 Most injected domains . 25
2.2 Top �ve regular expressions extracted by the memory analysis. 27

3.1 Statistics of the collected data from real machines 36
3.2 Statistics of the collected data from ransomware samples 36
3.3 Filesystem detection features . 38
3.4 FPR with One-machine-o� Cross Validation 46
3.5 10-fold Cross-Validation: Choice of K 47
3.6 Dataset of 305 unseen samples of 11 di�erent ransomware families. . . 48
3.7 Measured storage space requirements 49
3.8 In�uence of T on runtime and storage overhead. 50

4.1 Choice of K . 72
4.2 Comparison of Agrigento with existing tools 73
4.3 Popular detected apps . 74

IX

List of Acronyms

API Application Programming Interface

AV Anti-Virus

C&C Command and Control

CDF Cumulative Distribution Function

CPU Central Processing Unit

DLL Dynamic Loaded library

DNS Domain Name System

DOM Document Object Model

FS File System

HTML Hypertext Markup Language

HTTP(S) Hypertext Transfer Protocol (Secure)

IP Internet Protocol

OS Operating System

OTP One-Time Password

PE Portable Executable

PID Process Identi�er

PIN Personal Identi�cation Number

REGEX Regular Expression

TEB Thread Environment Block

TIB Thread Information Block

URL Uniform Resource Locator

VM Virtual Machine

XML eXtensible Markup Language

1

1. Introduction

As a consequence of the continuous advances in technology, computers run nowadays
most of the fundamental tasks of our society, and software controls such devices and
their operations. Most importantly, people’s personal data are entirely managed by
software programs. However, in parallel to the di�usion of connected digital devices
we have witnessed an enormous rise of cybercrime. In fact, criminals found in this
digital world a lucrative business. As a matter of fact, �nancially-motivated malware
is nowadays one of the most dangerous Internet threat.

The concept of computer malware was introduced in 1987 by Cohen [21], who the-
orized the possibility for a computer program to perform malicious actions without
users’ control, and to spread across connected machines. Since then, malicious soft-
ware has widely evolved. Initially, malware authors developed malicious programs
just to prove their skills and talent. For instance, the Morris worm in 1988 caused a
massive denial of service of computers connected to the Internet. The attack was just
an experiment and there was no �nancial motivation behind its development: “The
goal of this program was to demonstrate the inadequacies of current security measures
on computer networks by exploiting the security defects that Morris had discovered.” 1

Instead, today malware authors aim at gaining pro�ts, implementing behaviors that
range from stealing online banking credentials to locking or encrypting users’ �les in
order to ask for a ransom payment. Moreover, there is an active ecosystem behind
these criminal activities, which, like an industry, provides malware toolkits that can
be purchased online and con�gured through easy-to-use user interfaces.

This scenario is further ampli�ed by the huge amount of data that users produce
everyday. According to Cisco [20], the average amount of Internet IP tra�c reached
96,054 PB per month in 2016 and Internet reached 3,424,971,237 users [2]. This data is
extremely attractive for cybercriminals, who built a lucrative ecosystem that leverages
users’ information to make illicit pro�ts. For instance, Figure 1.1 shows the common
fraud scheme behind the sophisticated money stealing process. The �rst step is the
malware implementation. Malware authors implement malware toolkits and put them
on sale on the underground markets. Second, cybercriminals buy a toolkit, create a
customized sample (or the malware authors themselves create the executable), and
start spreading it to infect victims. Then, the stolen money are kept on bank accounts
that are not in the criminals’ name, but they are property of another actor, called
“money mule.” Money mules receive the stolen money, keep part of the sum for them-
selves and move the rest to the criminals’ real accounts. In this way, cybercriminals
add another layer between themselves and the victims, making it very hard to identify
the real responsible behind the fraud [32].
1 US v. Morris, 928 F. 2d 504 - Court of Appeals, 2nd Circuit 1991

3

Chapter 1. Introduction

Money Mules

Victims

Malware
Exploiters

Malware coders develop
malicious software that is
sold on the black market.

Malware exploiters purchase malware and use it to
steal victim banking credentials. They launch
attacks from compromised machines that allow them
to transfer stolen funds and deter any tracking of
their activities.

Money mule networks are comprised of
individuals engaged in the transfer of stolen
funds who retain a percentage for their
services.

Victims include individuals,
businesses, and financial institutions.

Cyber Theft Ring

Victims are both
financial
institutions and
owners of infected
machines.

Money mules
transfer stolen
money for criminals,
shaving a small
percentage for
themselves.

Criminals come in
many forms:
Malware coder
Malware exploiters
Mule organization

3. Banking
credentials
siphoned

4. Hacker
retrieves
banking
credentials

Targeted
victim

6. Hacker logs into victim’s online bank account

Victim bank
Money mules

7. Money
transferred
to mule

8. Money
transferred from
mule to organizers

2. Victim infected
with credential-
stealing malware

Hacker

Compromised
collection server

5. Remote
access to
compromised
computer

1. Malware coder writes malicious
software to exploit a computer
vulnerability and installs a trojan

Malware coder

Compromised
proxy

Fraudulent
company

How the Fraud Works

Hacker

Global Reach

Total FBI cases: 390
Attempted loss: $220 million

Actual loss: $70 million

United States: 92 charged and 39 arrested
United Kingdom: 20 arrested and eight search warrants

Ukraine: Five detained and eight search warrants

Law Enforcement
Response To Date:

victims

mule organization
malware coder/exploiters

Figure 1.1: Common cyber banking fraud scheme (source [32] 2010).

4

1.1. Todays’ Security Threats

In this dissertation, we detail our research on the analysis and detection of the cur-
rent software abuses, with the aim of defending users from such threats. In particular,
we concentrate on three main threats, which caused billion dollars losses in the past
years. First, we focus on information-stealing malware, also known as “banking Tro-
jans,” a class of malware that steals victims’ private information (e.g., banking creden-
tials) by taking control of the victims’ browser —Man in the Browser attacks— in order
to perform �nancial frauds. Second, we focus on ransomware, another class of mal-
ware that encrypts victims’ �les, preventing legitimate access until a ransom is paid.
Third, we focus on mobile privacy leaks. Mobile apps collect a wealth of users’ private
information, which is particularly attractive. In fact, cybercriminals are known to sell
users’ private information on the underground markets, and advertisement libraries
massively gather such data to illicitly increase their pro�ts.

1.1 Todays’ Security Threats

Every year, new threats are discovered and, while attackers take advantage of them
until e�ective countermeasures are found, researchers and security experts continu-
ously implement new defense mechanism to protect users.

Symantec detected 357 millions of new malware variants in 2016 [89]. The number
of �nancial Trojan detections decreased by 36 percent in 2016 (73 percent in 2015) [98]
and mobile banking malware targeted more than 170 apps for credential stealing.

Extortion-based schemes turned out to be particularly e�ective for cybercriminals
in the last years. Ransomware, malware that encrypts users’ �les and asks for a ransom
to release the decryption key(s), has been the most prevalent class of malware in the
last two years. From 2015 to 2016, the number of ransomware families increased from
30 to 100, and the average ransom amount raised from 294 USD to 1,077 USD [89].
Such a great di�usion made experts de�ne 2016 as the “year of extortion.”

Furthermore, the last years have been also dominated by high-pro�le data breaches.
In the last 8 years more than 7.1 billion identities have been exposed in data breaches
[89]. For instance, in July 2017, Equifax, a consumer credit score company, revealed
unauthorized access up to 143 million customer account details, including names, so-
cial security numbers, drivers licenses, and credit card numbers of around 200,000
people [54]. This proves how cybercriminals are interested in users’ private data. This
is due to the fact that people’s information are particularly pro�table on the under-
ground markets, which today run a very pro�cient business: everyone can buy credit
card information, full identities, or rent a scam hosting solution.

1.2 Original Contributions

In the aforementioned threat landscape, our main research area focuses on �nancially-
motivated software abuses. In particular, we focus on generic approaches to detect
these malicious activities and protect users from such threats. Since todays’ threats
are complex and continuously evolving, we need our solutions to be generic and to
adapt themselves to the changes quickly. Our contributions focus on the mitigation
of three main threats that have been widely spread and caused billion dollars losses:
banking Trojans, ransomware, mobile privacy leaks.

5

Chapter 1. Introduction

1.2.1 Banking Trojans Analysis and Detection

Banking Trojans can be detected by static signatures that precisely identify malicious
binaries. However, this approach is not generic and strongly depends on the imple-
mentation details of the malware sample. In addition, new families and new versions
of such Trojans are constantly released, and each speci�c sample can be customized
and obfuscated, generating new, distinct executables. For these reasons, we propose
a novel, generic, and e�ective approach to analyze and detect the common behavior
of this malware. Modern Trojans are in fact equipped with a common functionality,
called WebInject, used by cybercriminals to silently modify web pages on the infected
hosts.

In summary:

• We proposed a tool, Prometheus, that, based on web-page di�erential analysis,
characterizes WebInject mechanisms in an implementation-independent fashion,
without needing a-priori knowledge about the API hooking method, nor on the
speci�c con�guration encryption-decryption mechanisms used by the malware.
Our approach generates robust, behavioral signatures of the WebInject behavior.

• We combined the web page di�erential analysis with a memory forensics inspec-
tion technique to validate the generated signatures.

• We performed experiments on a dataset of real, active Trojans, and provided
insights from a data analysis point of view (i.e., classi�cation of the URLs where
injections occur typically) that is used for validating our approach.

• We developed a prototype tool, Iris, that leverages the signatures produced by
Prometheus to check, on the client side, whether a web page is rendered on an
infected machine. Our tool works by inspecting the memory of running browser
processes and reconstructing the DOMs of the visited web pages to match injec-
tion signatures and spot artifacts of malicious web-injections.

1.2.2 Protection from Ransomware Attacks

Preventive and reactive security measures can only partially mitigate the damage
caused by modern ransomware attacks. In fact, pure-detection approaches (e.g., based
on analysis sandboxes or pipelines) are not su�cient, because, when luck allows a
sample to be isolated and analyzed, it is already too late for several users. We believe
that a forward-looking solution is to equip modern operating systems with generic,
practical self-healing capabilities against this serious threat.

In summary:

• We performed the �rst, large-scale data collection of I/O request packets gener-
ated by benign applications in real-world conditions. Our dataset contains about
1.7 billion IRPs produced by 2,245 di�erent applications.

• We proposed a ransomware-detection approach that enables a modern operating
system to recognize the typical signs of ransomware behaviors.

• We proposed an approach that makes a modern �lesystem resilient to malicious
encryption, by dynamically reverting the e�ects of ransomware attacks.

6

1.3. Document Structure

• We implemented these approaches in ShieldFS as a drop-in, Windows kernel
module that we showed capable of successfully protecting from current ran-
somware attacks.

1.2.3 Mobile Privacy Leaks Detection

Despite signi�cant e�ort from the research community in developing privacy leak
detection tools based on data �ow tracking inside the app or through network tra�c
analysis, it is still unclear whether apps and ad libraries can hide the fact that they
are leaking private information. In fact, all existing analysis tools have limitations:
data �ow tracking su�ers from imprecisions that cause false positives, as well as false
negatives when the data �ow from a source of private information to a network sink
is interrupted; on the other hand, network tra�c analysis cannot handle encryption
or custom encoding. We propose a new approach to privacy leak detection that is not
a�ected by such limitations, and it is also resilient to obfuscation techniques, such as
encoding, formatting, encryption, or any other kind of transformation performed on
private information before it is leaked.

In summary:

• We developed a tool, Agrigento, that performs root cause analysis of non-
determinism in the network behavior of Android apps.

• We showed that, in most cases, non-determinism in network behavior can be
explained and eliminated. This key insight makes privacy leak detection through
di�erential black-box analysis practical.

• The results of our empirical study provide new insights into how modern apps
use custom encoding and obfuscation techniques to stealthily leak private infor-
mation and to evade existing approaches.

The aforementioned results have been published in the proceedings of interna-
tional conferences and international journals.

1.3 Document Structure

This document is structured as follows. Chapter 2 focuses on banking Trojans. Specif-
ically, after an initial description of the details of this kind of malware, and a review
of the research works proposed in the state-of-the-art around this topic, we present
our novel analysis approach and the results of our experiments published in [23].

In Chapter 3, we focus on ransomware and propose our approach to protect users
against this threat. Speci�cally, we initially present the results of our preliminary
study on the �lesystem activity. Then, based on the obtained results, we details our
detection and protection methodology published in [22]. Finally, we describe our ex-
perimental evaluation.

Chapter 4 focuses on mobile privacy leak detection. We �rst describe the challenges
in applying black-box di�erential analysis at the network level, then we present the
techniques we proposed to address such challenges and the approach we published
in [24]. Last, we evaluate our system prototype.

7

Chapter 1. Introduction

Finally, Chapter 5 wraps up the results of our research by summarizing the key
points and setting new challenges for future works.

8

2. Analyzing and Detecting WebInject-based Infor-
mation Stealers

Nowadays malware is reaching high levels of sophistication. The number of families
and variants observed increased exponentially in the last years. A particular type of
Trojans, known as Information-stealers or banking Trojans, allows malware operators
to intercept sensitive data such as credentials (e.g., usernames, passwords) and credit
cards information. Such malware uses a Man-in-the-Browser technique that infects a
web browser by hooking certain functions in libraries and modifying web pages.

More precisely, they use two main attack techniques: (1) modi�cation of network
Windows APIs (2) and modi�cation of web pages requested by the web client for
speci�c websites (e.g., banks). The �rst technique intercepts at network API level
any sensitive data that are processed by the browser even in case the connection is
encrypted. The second technique typically adds new form �elds to the web pages,
in order to steal target information such as One-Time Passwords. Each attack module
relies on an encrypted con�guration �le that contains a list of targeted URLs (e.g., well-
known banks URLs) in form of regular expressions along with the HTML/JavaScript
code that should be injected to a particular website. Given its �exibility, WebInject-
based malware has become a popular information-stealing mechanism nowadays [97].

Furthermore, these Trojans are sold on underground markets along with automatic
frameworks that include web-based administration panels, builders and customization
procedures.

Di�erent works have been done regarding the analysis and detection of banking
Trojans [14], [18], [30], [67], [70], [75] but, as explained in §2.2.1, most of them are
dependent on a speci�c malware family or version, and require a considerable e�ort to
be constantly adapted to new emerging techniques. We aim to precisely characterize
WebInject behaviors without relying on the implementation details of a malware but
mainly on its own injection behavior.

More precisely, based on �ndings of our previous work [25], which demonstrated
the feasibility of web page di�erential analysis, we propose Prometheus, an auto-
matic framework for analyzing banking Trojans. The proposed system works inde-
pendently from the implementation details of the malware and the key idea is based
on the fact that actions of malware must eventually result in changing the document
object model (DOM). Comparing DOMs downloaded in clean machines with those
downloaded in infected machines allows us to generate signatures and extract the
WebInject con�guration �le. Our approach also exploits the artifacts left in memory
by malware during the injection process and uses them for validating the results of
the DOMs analysis. It is important to note that our detection mechanism exploits a
di�erent angle of malware behavior and it can be deployed as an additional detection

9

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

layer along with others approaches [85, 31, 55] (e.g., AVs, IDS etc.). Our system is
orthogonal to any other detection techniques and o�ers another protection layer that
can be used to improve the detection capabilities.

We evaluated Prometheus on a dataset of 135 distinct samples of ZeuS analyzing
68 real, live URLs of banking websites. We manually veri�ed the results of our exper-
iments and we show that Prometheus is able to generate signatures correctly with a
negligible fraction (0.70%) of “false di�erences,” which are those legitimate di�erences
wrongly detected as malicious injections. Our experiments also show the e�ciency
of our system, which is able to analyze one URL every 6 seconds on average.

2.1 Background on Information Stealers

Information-stealing Trojans is a growing [106], sophisticated threat. The most fa-
mous example is ZeuS, from which other descendants were created. This malware
is actually a binary generator, which eases the creation of customized variants. For
instance, as of February 23, 2016, according to ZeuS Tracker1, there are 8,149 distinct
variants that have yet to be included in the Malware Hash Registry database2. Notice
that this is an underestimation, limited to binaries that are currently tracked. This
high number of variants results in a low detection rate overall (40.05% as of February
23, 2016).

Lindorfer et al. [60] measured that Trojans such as ZeuS and GenericTrojan are
actively developed and maintained. These and other modern malware families live
in a complex environment with development kits, web-based administration pan-
els, builders, automated distribution networks, and easy-to- use customization pro-
cedures. The most alarming consequence is that virtually anyone can buy a malware
builder from underground marketplaces and create a customized sample. Lindorfer et
al. [60] also found an interesting development evolution, which indicates a need for
forward-looking malware-analysis methods that are less dependent on the current or
past characteristics of malware samples or families. This also relates to the fact that
the source code is sometimes leaked (e.g., CARBERP, ZeuS), which leads to further
creation of new variants [86].

2.1.1 The underground economy

One of the banking Trojan problems is that anyone, independently from their skill
level, can perform �nancial frauds, as the underground marketplace is active and pro-
vides all the required resources, like a service industry. For example, Goncharov [41]
estimated for the only Russian underground economy a 2.3 billion dollars market.

Grier et al. [43] investigated the emergence of the exploit- as-a-service model,
showing how attackers pay for exploit kits to infect victims and propagate their own
malware through drive-by downloads. Therefore, even with little or no expertise or
ability to write a malware, anyone can simply purchase these “kits,” and follow detailed
guides and video tutorials sold online. The Trojan samples and services available on
the underground markets vary, and their price depends on the features. Typically, it
starts from 100$ for an old, leaked version, to about 3,000$ for a new, complete ver-
sion [86]. Furthermore, cybercriminals o�er paid support and customization, or sell
1 https://zeustracker.abuse.ch/statistic.php 2 http://www.team-cymru.org/Services/MHR/

10

https://zeustracker.abuse.ch/statistic.php
http://www.team-cymru.org/Services/MHR/

2.1. Background on Information Stealers

Wininet.dll

HttpSendRequest:
90 [NOP]
90 [NOP]
90 [NOP]
90 [NOP]
90 [NOP]
8BFF [MOV EDI, EDI]
55 [PUSH EBP]
8BEC [MOV EBP, ESP]
…
C3 [RET]

E9 [JMP]
BF
FF
AC
76

Malicious Code
intercepting data

call

1

2

3

4

Figure 2.1: Example of API hooking.

advanced con�guration �les that the end users can include in their custom builds.
Custom WebInjects can be also purchased for 30-100 [97].

2.1.2 Man in the Browser attacks and WebInject

Financial Trojans use Man-in-the-Browser (MitB) techniques to perform attacks. These
techniques exploit API hooking and, as the name suggests, allow malware to be log-
ically executed inside the web browser and to intercept all data �owing through it.
Also, modern banking Trojan families commonly include a module called WebInject
[97], which facilitates the manipulation and modi�cation of data transmitted between
a web server and the browser. Once the victim is infected, the WebInject module
places itself between the browser’s rendering engine and the API networking func-
tions used for sending and receiving data. By hooking high-level API communication
functions in user-mode code, the Trojans can intercept data more conveniently than
traditional keyloggers, as they can intercept data after being decrypted. Therefore, the
WebInject module is e�ective even in case an HTTPS connection is used. Figure 2.2
shows a high level view of the injection mechanism, and an example of inline hook-
ing, in which the Trojan overwrites the �rst �ve bytes of the HttpSendRequest function
with a jump to malicious code. Exploiting the high level con�guration interface of the
WebInject module, cybercriminals can e�ectively inject HTML code that adds extra
�elds in forms so as to steal sensitive information. The goal is to make the victim be-
lieve that the web page is legitimately asking for a second factor of authentication or
other sensitive information (as illustrated in Figure 2.3). In fact, the victim will notice
no suspicious signs (e.g., invalid SSL certi�cate or di�erent URL) because the page is
modi�ed “on the �y” right before being displayed, directly on the local machine.

The WebInject module loads an encrypted con�guration �le. This �le contains
the list of WebInject rules, which include the target URLs, or regular expressions that
match more than a single URL, and the HTML/JavaScript code to be injected into
speci�c web pages. For each rule, the attackers can set two hooks (data_before and
data_after) that identify the portion of the web page where the new content, de�ned

11

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

SERVER

HTTPS

O
rig

in
al

 P
ag

e

K
er

ne
l S

pa
ce

U
se

r S
pa

ce

Wininet.dll

<html>
…
</html>

<html>
…
<input/>
...
</html>

INFECTED MACHINE

WebInject
<input/>

…
<input/>
...

Decryption Encryption

API Hooking
Wininet.dll

Figure 2.2: High level view of the Injection mechanism

by the data_inject variable, is injected. An example of a real WebInject rule is shown
in Figure 2.4.

2.2 State of the Art and Research Challenges

New families and new versions of info-stealing Trojan samples are frequently released
[15, 88, 99] and each speci�c Trojan can be customized and obfuscated, generating
new, distinct executables. In addition, the custom con�guration �les are encrypted
and embedded in the �nal executable. For these reasons, manually analyzing all the
samples is not scalable. Thus, automatic mechanisms to extract valuable information
from encrypted con�guration �les or for analyzing the activity of an infected machine
are needed.

Figure 2.3: Example of a real injection on the home page of online.citibank.com.

12

2.3. Approach Overview

2.2.1 Information Stealers Analysis and Detection

Bruescher et al. [18] proposed an approach to identify WebInject-based information
stealers. The idea is similar to the typical rootkit-detection approach based on recog-
nizing the presence of API hooks in common loaded libraries, especially in browser
and Internet-related APIs. To avoid false positives (e.g., legitimate hooks), they inspect
the destination of each hook, and check if the pointed module is trusted and correctly
signed. The main limitation of this detection approach is the strong dependence on
the version of the Trojan, on the operating system, and on the hooked browser. Di�er-
ent Trojans or future releases could change the list of API functions to hook, or target
another browser that uses di�erent libraries. We argue that, in general, user-level API
hooking is not the only method to achieve MitB functionalities.

In Heiderich et al. [45] the authors protect the browser from malicious websites
that dynamically change the DOM. Although not designed speci�cally to target in-
formation stealers, such mechanism could be applied for recognizing WebInjects. In
details, their system instruments the ECMA script layer by proxying its functions.
However, as the authors mention, their method can only detect changes of the DOM
that occur at runtime, whereas WebInjects work at the source-code level. This means
that they are not able to identify modi�cations (e.g., node insertion) not performed via
JavaScript code.

Wyke et al. [100] outlines a sandbox-based system that automatically analyzes
banking Trojans observing the network tra�c, and extracting valuable information
such as command and control addresses, in a scalable and extensible way. Although
this approach still needs to be manually updated to support newer malware versions,
it is a solid tool that can be used to complement our approach.

2.3 Approach Overview

We divide our approach into two parts: web page di�erential analysis and memory
forensic analysis.

First, we assume that a page rendered on an infected machine includes the injected
portions of code. This is reasonable and realistic, as WebInjects-based Trojans need
to perform code injections. In contrast, the same page rendered on a “clean” machine
contains the original source code. Hence, our approach consists in analyzing informa-

set_url *.wellsfargo.com/* G
data_before
<input type="password"*

data_end
data_inject

<label for="atmpin">ATM PIN</label>:

<input type="password" accesskey="A"
id="atmpin" name="USpass" size="13" maxlength="14" style="width:
147px" tabindex="2" />

data_end
data_after
data_end

Figure 2.4: Example of a real WebInject rule

13

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

All	Pages:	50.6%

Login	Pages:	19.3%

Post-Login	Pages:	9.5%

Home	Pages:	1.2%

Unknown:	19.5%

Figure 2.5: Classi�cation of the 694 extracted regexes according to the kind of pages targeted.

tion stealers looking for evidence of injections in the web pages, and extracting this
evidence through a comparison of the web pages with the original ones. This method
does not leverage any malware-speci�c component or vulnerability to observe and
characterize the injection behavior, therefore it is more generic by design. However,
it could generate many false di�erences since the content of a web page may vary le-
gitimately. For example, this could be due to server-side script, or advertisements that
include dynamically changing content. To cope with this, we collect many versions
of the same web page, and compare them to discard legitimate di�erences that occur
between two or more of them. Moreover, to reduce false di�erences, we designed four
heuristic-based �lters (i.e., whitelisting clean di�erences, ignoring node or attribute
reordering, �ltering harmless di�erences, identifying repeated malicious injections).
As further discussed in §4.6, although �ltering legitimate changes creates an oppor-
tunity for the attacker to hide in such di�erences, this is unlikely to happen and easy
to remediate collaborating with banks and receiving real-time updates about changes
in the web pages.

Secondly, we assume that, during the injection process, Trojans leave artifacts of
their con�guration �les, for examples list of targets URLs, attributes, etc. in memory.
Our approach is to recover such artifacts from the memory of an infected machine,
through memory forensic techniques that inspect the memory of the target applica-
tions, and search for strings tokens associated to the de�nition of regular expressions,
part of any WebInject con�guration �le. We manually examined the extracted regular
expressions to obtain a breakdown of the most targeted pages, so to understand where
injections typically occur. We distinguish between login pages, post-login pages, home
pages, and all pages (those regular expressions that cover all the pages of a given do-
main, such as *exampledomain.com/*). We were not able to classify the 19.5% of the
regular expressions, because they did not contain any signi�cant word in the path (e.g.,
login, logon, access), and the URLs were inactive. As shown in Figure 2.5, the majority
(50.6%) of the sample we analyze targets all the pages of the domains. This strategy
is more e�ective for cybercriminals, because their injections can still succeed even if
the URL of the targeted page changes. Instead, regexes targeting post-login pages are
a small fraction (9.5%). Thus, our current approach can be used to characterize the
majority of the injection behaviors, leaving post-login pages as future work.

As a consequence, extracting these artifacts represents a further indication of the

14

2.4. Application Scenarios

malicious activity, allows us to validate the results of the web page di�erential analysis
and gain further insights about the use of WebInject techniques.

2.4 Application Scenarios

Prometheus produces signatures in the form of XPath expressions (Figure 2.6), which
allow to check, on the client side, whether a web page is currently being rendered on
an infected machine or, more in general, if a page of interest is targeted by a speci�c
sample. In practice, as depicted in Figure 2.7, we foresee a centralized server and
several consumers that send URLs of interest.

In Scenario 1 the URLs are received by the clients (e.g., antivirus module, browser-
monitoring component). The server replies with the list of signatures related to the
requested URL(s). In the case of an antivirus, the browser-monitoring component
(similar in spirit to Google Safebrowsing) can request the signatures of each browsed
URL, and verify if any of the signatures match.

The second scenario that we envision, Scenario 2, has to do with research and
large-scale monitoring. More precisely, we believe that Prometheus could be a good
companion for initiatives such as ZeuS or SpyEye Tracker, VirusTotal, Anubis, Wepawet
and similar web services that receive large daily feeds of malware samples and URLs to
analyze. In this context, Prometheus can be used to automatically determine whether
a sample performs web injection against a given URL, regardless of whether it is ZeuS
or SpyEye, or some other unknown family, and to extract the portion of injected code.

One last application, Scenario 3 envisions an IT administrator or web developer
(e.g., of online banking backends), which provides a feed of URLs likely to be targeted
by WebInject-based malware once in production. This scenario was suggested by a
developer of a large national bank with which we collaborate, who noticed the lack of
a centralized solution to determine whether their clients were infected by a banking
Trojan. In this context, the developer would like to have a web framework that o�ers
an API to programmatically mark sensitive resources (e.g., /page/login/, or those that
contain forms). Marked resources will be processed by the web framework right before
the HTTP response is sent to the requesting client. The web framework will then
append a JavaScript procedure that, once executed on the client, performs a similar
check to the one described in the aforementioned “Safebrowsing” scenario.

Generally, we envision our system to be deployed in collaboration with banks that
provide feedbacks whenever their websites are massively updated, and strictly col-
laborate to update signatures. This would avoid almost all the false di�erences, and
the possibilities for attackers to hide their injections. Moreover, as discussed in §4.6,

{
"signatures": [
{
"xpath": "/html[1]/body[1]/table[3]/tr[1]/form[1]/input[13]",
"value": "<input name=OTP type=password/>"

}
]

}

Figure 2.6: Example of a generated signature for a given URL and sample

15

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

(2
)

S
ig

n
atu

res(1
)

U
R

L

+
 S

am
p

le

Prometheus

Browser plugin Web framework

(1) URL

(2) Signatures (2) URL

(1) Signatures

Client
(2

)
U

R
L

(3)

/page/login/ response

+

obfuscated JavaScript

+

Samples

Webservice API

Developer

/page/login/

/page/register/
...

/page/sensitive/res/

(1
) Sen

si
tiv

e

re
so

ur
ce

s

matchSignatures() (4)

Scenario 1 Scenario 2 Scenario 3

. . .

signatures

(End User) (Analyst) (Bank Backend)

Figure 2.7: Three application scenarios described in §2.4

the signature-matching algorithm can be designed to match only the leaf nodes of the
XPath, hence being more �exible with respect to legitimate page changes.

2.4.1 Detecting WebInjects through Live Memory Inspection

With Prometheus, we introduced an automatic framework for analyzing WebInject-
based Trojans. Prometheus observes the di�erences that Trojans produce in an in-
fected DOM and generates precise signatures of the injection behavior. Although our
experiments showed the e�ectiveness of Prometheus for malware analysis, we did
not fully exploit the generated signatures for detecting banking Trojans. Indeed, de-
tecting widespread classes of malware by looking at their “generic” e�ects, instead
of focusing on the speci�c implementation, already proved its e�cacy in other con-
texts [55].

To overcome this limitation, we propose Iris [66], a client-side kernel-space module
to automatically detect Man-in-the-Browser attacks that result in visible DOM modi-
�cations, independently from the malware implementation. Our system analyzes the
memory of running browser processes and, leveraging live memory analysis, recon-
structs the DOMs of the visited web pages to match injection signatures and spot
artifacts of malicious web-injections.

However, signature matching in “raw” memory is not trivial and it requires to over-
come several technical challenges. First, malware can easily circumvent any detection
performed in the browser context—it infects and controls the browser. For this reason,
we operate at a “lower level” (kernel driver). In addition, there is a semantic mismatch
between the dynamic DOM objects allocated by the browser and the “raw” and static
memory view that our solution must e�ciently analyze.

16

2.4. Application Scenarios

browser

process

process

monitor
PID list

memory

scanner

user space

kernel

signatures

known browsers

URL finder signature matching

callback on process

creation and termination

scan virtual memory

Figure 2.8: Architecture of Iris.

We implement a prototype of Iris as a Microsoft Windows kernel driver, and we
evaluate it on two distinct ZeuS and Citadel samples, analyzing a real, live banking
website. We manually veri�ed these preliminary results, showing that Iris is able to
detect when a browser is infected.

Iris is composed of two parallel processes (Figure 2.8): a process matcher and
a memory scanner. The process matcher holds a list of PIDs belonging to running
browser processes: It is noti�ed whenever a new process is created or deleted, and, if
the process image name belongs to a known browser, updates the PID list. Periodi-
cally, thememory scanner scans the memory space of each browser process, extracting
the URLs of the pages being visited. If the signature database contains signatures re-
lated to the extracted URLs, it invokes the signature matching module, which scans the
process memory to match its content (i.e., in-memory DOM fragments) with known
signatures. If there is a match, we detect an infection.
Signatures. A signature is a tuple containing (a) a URL, (b) an XPath expression spec-
ifying the location of the injection in the DOM, and (c) the injected content, which
can be a node or an attribute. Such signatures are URL-speci�c and are based upon
the e�ect of the banking Trojan on the target web-page rather than the malware im-
plementation: They can be generated through automated dynamic analysis, such as
Prometheus.
Memory Scanner. The memory scanner cyclically iterates through the running browser
processes’ PIDs and gathers the valid (i.e., allocated) virtual memory pages. It scans
the process memory space to determine the memory state (ZwQueryVirtualMemory). If
a page region has state MEM_COMMIT, it is valid and can be scanned for URLs or sig-
natures: Through the KeStackAttackProcess routine, Iris attaches to the target process
memory space and makes a copy of the memory region to analyze. The copied mem-
ory bu�er is passed to the URL �nder and signature matching modules. After that, we
move to the next region of addresses in the target process, repeating this procedure
until a region has an invalid state (STATUS_INVALID_PARAMETER).
URL �nder. This module �nds the visited URLs in a memory region belonging to a
running browser process. In general (e.g., Internet Explorer), multiple browser tabs

17

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

share the same process: URLs and DOMs are scattered over the process memory.
Hence, we need to perform a preliminary complete scan of the process memory to
gather the relevant URLs. Instead, the multi-process architecture of some browsers,
such as Google Chrome, has a di�erent rendering process for each tab (i.e., each vis-
ited URL). In this case, we stop the linear memory scan after identifying the visited
URL, performing signature matching only over the remainder of the process memory.
This is possible because, as experimentally determined, in the memory address space
of each Chrome rendering process, the URL is in a lower memory address than the
DOM.
Signature matching. This module matches a memory bu�er against the signatures
targeting the visited URLs in three steps:

1. String search. First of all, it searches for occurrences of the signature content
(i.e., the injected HTML/JS code) in the memory bu�er using the Boyer–Moore
algorithm [17]. This allows to e�ciently discard signatures that do not match.

2. Re�nement. If there are candidate matches, it re�nes the search by checking
whether the string found in memory is part of a valid HTML fragment (e.g., in
case of an attribute injection, the value found in memory should be an attribute
with the same HTML element type described in its signature). We search the
start tag of the element backward in memory, starting from the matched value;
when we �nd the node, we use a lightweight HTML parser to validate that the
string ranging from the start tag until the injected value is a valid HTML element
with the type and attribute (or content in case of text injection) de�ned by the
signature. This phase is not required when whole HTML fragments are injected.

3. XPath search. Lastly, it checks whether the location of the match in the DOM is
the one speci�ed in the signature’s XPath expression. We proceed by walking the
XPath expression starting from the node with the injected content and moving
backward to the DOM root, while matching DOM nodes in the memory dump.
We note that, often, the complete DOM continuously changes, and cannot be
retrieved with a single live memory “snapshot.” Instead of attempting to recon-
struct the DOM correlating multiple memory scans, we overcome this issue by
coping with partial and approximate matches (e.g., when only fragments of the
DOM are available, or when the DOM is scattered around the memory).

Iris supports three levels of match: In the best case, it matches the XPath expres-
sion in the signature up to the root node; on average, it partially matches the XPath
expression; in the worst case, it matches only the signature value. The user can tune
the match level required to trigger a detection according to the desired trade-o�.
Preliminary Results In order to test the correctness of our tool, we performed an
experiment building a custom Trojan in a controlled environment. Speci�cally, we got
access to ZeuS and Citadel’s builders. Using such tools, we built two samples de�ning
a list of custom web-injections for a real banking website. We then manually created
the signatures for such injections and run the samples in a controlled environment
(VirtualBox VM running Windows 7 32 bit) where we previously installed Iris (to-
gether with our signatures).

18

2.5. System Design & Implementation

As a result, Iris detected the presence of the Trojans when we visited the targeted
web-pages using Internet Explorer, showing it is able to successfully match such sig-
natures only looking at the raw memory of the browser.
Future Work. We plan to extend the evaluation of Iris on a large dataset of dis-
tinct samples of Trojans. In particular, we want to study how the di�erent matching
techniques (full XPath, partial XPath, content only) a�ect the performance of the de-
tection.

2.5 System Design & Implementation

The input of our system is a list of URLs that need to be monitored (e.g., banks URLs)
and a malware sample. Given the inputs, the system performs the web page di�er-
ential and the forensic memory analysis in three phases: (1) Data Collection, (2) Data
Processing, and (3) Signatures Generation.

As a �nal output, our approach produces a list of di�erences per URL, which pre-
cisely identify the portion of injected or changed code and represent our signatures.
Each signature is de�ned by (1) the XPath of the a�ected node or attribute, and (2) the
injected content (Figure 2.6). As a matter of fact, these signatures partially reconstruct
the con�guration �le.

In Figure 2.9 we reported the overview of our analysis, given a malware sample to
analyze. In the following sections we provide the details of each phase.

2.5.1 Phase 1: Data Collection

Our system retrieves (1) the DOMs objects, and (2) the memory dump of the web
browser process. To this end, the system executes a small set of virtual machines. Half
of them are infected with the malware sample and the other half are clean. Afterwards,
the system visits the set of URLs with each VMs, collects the DOMs and the memory
dump.
DOMs Collection. Each VM receives a list of URLs as an input, and it visits each URL
with a WebDriver-instrumented browser. For each visited URLs, Prometheus saves
the resulting DOMs and it stores them as serialized representations of existing nodes,
including any DOM manipulations performed by client-side code at runtime while the
page loads. The DOMs comprise the content of the nodes in the pages, including script
tags. Since the content of a web page may vary legitimately (e.g., server-side scripts,
advertisement inclusions), the DOMs collection phase is performed on multiple clean
and infected machines. This is used to eliminate legitimate di�erences that occur
between two or more clean VMs. When this phase terminates, all the dumped DOMs
are stored and labeled as “clean” or “infected.”
Memory Dump In this phase, Prometheus executes a new VM along with the tar-
get malware sample. To trigger the malware infection and obtain the target URLs,
Prometheus runs the browser inside the VM. Then, the system dumps the memory
of the VM from the host OS by using the Cuckoo feature. This allows us to avoid cre-
ating any artifacts that can be exploited by the malware. At the end of this phase, the
memory dump is stored as a �le on the disk. We use a separate VM for the memory
analysis to avoid false positives due to the execution of multiple applications on the
same VM.

19

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

Sample Analysis

Phase 1:
Data Collection

Phase 2:
Data Processing

Phase 3:
Signatures Generation

Infected VM

Sample

W
eb

-p
ag

e
D

iff
er

en
tia

l A
na

ly
si

s
M

em
or

y
A

na
ly

si
s

Clean
VM 1 ... Clean

VM n

... Infected
VM m

Infected
VM 1

DOMs Collection

Clean
DOM 1

Infected
DOM 1Infected

DOM 1

Memory Dump

Memory Dump

In
pu

t
O

ut
pu

t
In

pu
t

O
ut

pu
t

Regexes

Memory Inspection

Memory Dump

Clean
Diffs

Infected
Diffs

DOMs Comparisons

Infected
DOM 1

Clean
DOM 1

Matches

Regexes Matching

Regexes

Signatures

Differences Filtering

Clean
Diffs

Infected
Diffs

URLs

Figure 2.9: Overview of a sample analysis. The web page di�erential analysis, and the memory
analysis are performed in parallel.

2.5.2 Phase 2: Data Processing

During the second phase of our approach, Prometheus compares the various DOMs
retrieved for each URL (downloaded by distinct VMs) and extracts the WebInject target
URLs from the memory dump obtained in the previous phase.
DOMs Comparison. We compare the DOMs in the following way. For each URL,
we consider one random clean DOM as a reference, and we compare all the others
against it. We rely on XMLUnit’s DetailedDiff.getAllDifferences(), which walks the
DOM tree, and extracts the following di�erences:

• Node insertion: Most information stealers add new �elds in forms, injecting
one or more <input/> nodes. Thus, it is crucial to identify this case, as it is one
of the most common injections.

• Attribute insertion: This identi�es injections that are mostly related to ma-
licious JavaScript code. In the common case, Trojans add attributes such as
onclick to bind JavaScript code and perform malicious actions whenever cer-
tain user-interface events occur.

• Node modi�cation: This occurs when Trojans modify the content (e.g., text
enclosed in) of an existing node. Often the target node is <script>.

20

2.5. System Design & Implementation

• Attribute modi�cation: This occurs when Trojans change the value of an ex-
isting attribute (e.g., to change the network address of the server that receives the
data submitted with a form, or to modify the JavaScript code already associated
to an action).

At the end of this phase, for each processed URL the extracted di�erences are in-
serted into two lists (clean di�erences and infected ones), according to the compared
DOM label. Each di�erence is composed by three elements:

• Type: The nature of the di�erence (node insertion, node modi�cation, attribute
insertion, or attribute modi�cation).

• XPath: The XML path to the node that is a�ected by the di�erence.

• Content: The value of the di�erence (e.g., in the case of a node insertion the
content is the HTML node inserted with all its own attributes).

Memory inspection. When the infected memory dump is generated, it is inspected
in order to extract the WebInject targets. To extract the target URLs and regular ex-
pressions, we developed a Volatility3 plugin based on YARA4. This plugin scans
the memory dump, looking for all the strings that match a YARA rule. In particu-
lar, since we observed that the URLs and the regular expressions are loaded in the
browser’s memory, the plugin inspects only its address space. We de�ned a regular
expression that matches the pseudo-URL format of the WebInject target URLs (e.g.,
domain.com/ibank/transfers/*, bank.com/login.php*). Moreover, our YARA rule
�lters the matched strings that are close to each other. In fact, since we noticed that
the WebInject targets are allocated sequentially, we leverage this fact to exclude all
the matching strings that are not WebInject targets.

2.5.3 Phase 3: Signatures Generation

Prometheus now �lters out the legitimate di�erences employing four heuristics. More-
over, it exploits the information extracted by memory analysis in order to validate the
generated signatures.
Di�erences Filtering. The two lists of di�erences produced in the previous phase
are �ltered according to four heuristics. The objective is to eliminate the legitimate
di�erences, therefore reducing the false di�erence rate. We designed and implemented
the following four heuristic �lters:

Heuristic 1: Whitelisting Clean Di�erences. In certain pages, there may be some nodes
that change very often their content (e.g., calendar, clock, advertisement and so
on). This kind of nodes generates a lot of di�erences that refer to the same node
but with di�erent content. These di�erences are present in both the clean and
infected list. For this reason, we remove all the infected di�erences with the same
type and the same XPath of a clean di�erence. For example, thanks to this �lter
we are able to discard the di�erences caused by advertisements that dynamically
change their message.

3 https://github.com/volatilityfoundation/volatility/ 4 http://plusvic.github.io/yara/

21

https://github.com/volatilityfoundation/ volatility/
http://plusvic.github.io/yara/

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

Heuristic 2: Ignoring Node or Attribute Reordering. In other pages, it may happen that
some nodes with a �xed content (mostly JavaScript) are omitted or moved in
di�erent places inside the web pages. We remove all the infected di�erences that
have the same type, the same last node in the XPath, and the same content of
a clean di�erence. For example, this �lter discards those di�erences caused by
an advertisement that presents a �xed content but that is dynamically loaded in
di�erent positions of the page. Even if this scenario seems unlikely, we found it
occurring in di�erent web pages.

Heuristic 3: Filtering Harmless Di�erences. Since malware authors are inserting new
elements in order to steal data from the victims, we are interested in di�erences
that are caused by insertions or modi�cations. For this reason, all the di�erences
that indicate other changes (e.g., deletion of nodes) are �ltered out. Moreover, we
whitelist attributes that are harmless according to our attacker model (i.e., value,
width, height, sizset, title, alt) and Prometheus automatically �lters them out.

Heuristic 4: Identifying Malicious Injections. A typical injection has the following char-
acteristic: it is present in all the DOMs downloaded by infected machines, but not
on the DOMs downloaded by clean machines. Furthermore, an injection is de-
�ned to insert a content after, or before, a node. Thus, we can assume that, for
a give sample and URL processed by multiple VMs, an injection has always the
same content, and injects in the same node, even if the node changes its XPath.
So a typical web injection refers to the same last node of an XPath that may vary
somehow. Hence, we �lter out all the di�erences that are not present (with the
same type, the same last node of the XPath, and the same content) in at least
ε% of the infected DOMs. Since a sample may not activate on some VMs (e.g.,
because malware authors take countermeasures to prevent dynamic analysis) it
may happen that a sample manifests its behavior only on a subset of the VMs.
The threshold ε copes with this problem.

The infected di�erences that pass this �ltering process are considered as malicious.
Regular Expression Matching. In this last phase, the regular expressions extracted
through memory inspection are examined to validate the results of the web page dif-
ferential analysis. If an injection is found at a URL not matching any of the regular
expressions, it is probably a false di�erence. Second, the number of matching regexes
allows us to rank the URLs according to how often they are targeted. This is useful in
case we want to limit the number of URLs processed during an analysis.

2.5.4 Implementation

The Prometheus prototype that we implemented is composed by a back-end and a
front-end. The back-end receives as input the speci�cation of the submitted analysis,
then it schedules it, managing the available resources (VMs), it processes the data as
explained in §2.5, and stores the results. We integrated Prometheus with Cuckoo5, an
open-source sandbox that interacts with the most common virtual machine managers.
We used Oracle VirtualBox6 as VMM. Inside each VM, we installed and con�gured
5 http://www.cuckoosandbox.org/ 6 https://www.virtualbox.org/

22

http://www.cuckoosandbox.org/
https://www.virtualbox.org/

2.6. Experimental Results

WebDriver7, a platform- and language-neutral interface that introspects into, and con-
trols the behavior of, a web browser and dumps the DOM once a page is fully loaded.

The front-end is a web application, through which users can submit samples, or
URLs, and obtain the results of their analysis or previous ones. Finally, we imple-
mented a JavaScript web-socket in order to dynamically show results during the anal-
ysis.

2.6 Experimental Results

We evaluated our implementation of Prometheus against 68 real, live URLs of bank-
ing websites targeted by 135 distinct samples of information-stealing malware. We
manually veri�ed the activity of each sample when the browser was rendering the
targeted websites, to make sure that all the samples were working as expected. While
doing this, we conducted a preliminary experiment to measure the dormant period
after which the malware triggers its malicious injections (these results are presented
in §2.6.2). We found out that 33.82% of the web pages were a�ected by at least one
injection, which Prometheus detected correctly, as summarized in Table 2.1.

Our �rst goal was to measure the correctness of the signatures that Prometheus
generates (§2.6.3 and 2.6.4), and the outcome of the memory analysis (§2.6.5). Then,
we assessed the computational resources required by Prometheus in function of the
number of DOMs compared per URL (§2.6.6). Last, we evaluated the impact of false
positives caused by our signatures (§2.6.7) during a typical real user’s browsing activ-
ity.

In all our experiments we deployed Prometheus on a 2.0GHz, 8-core Intel machine
with 24GB of memory. We used VirtualBox as a virtual machine monitor, and each
VM was equipped with 1GB of memory, enough to run Internet Explorer 8 on top of
Windows XP SP3.

2.6.1 Dataset

Our dataset is based on the ZeuS family, which is by far the most widespread infor-
mation stealer that performs injections. According to the conservative statistics by
ZeuS Tracker, as of February 23, 2016 there are 518 known C&C servers (179 of which
active), and a low estimated antivirus detection rate (40.05%, zero for the most popu-
lar and recent samples). We also conducted a series of pilot experiments with SpyEye,
which is less monitored than ZeuS; thus, it is more di�cult to obtain a large set of re-
cent samples. However, SpyEye uses the same injection module of ZeuS, as described
by Binsalleeh et al. [14], Buescher et al. [18], Sood et al. [83]. For these reasons, for the
purpose of evaluating the quality of our signature-generation approach, we decided to
select ZeuS as the most representative information stealer that generates real-world
injections. We tested 196 (and counting) samples, but 61 of these failed to install or
crashed, leaving 135 distinct samples.

We constructed a list of target URLs starting from a webinjects.txt leaked as part
of the ZeuS 2.0.8.9 source code8, and adding some new URLs extracted from initial
memory analyses. However, we removed most of the URLs contained in the initial list,
because they were inactive. The �nal URL list that has been evaluated was composed
7 http://docs.seleniumhq.org/projects/webdriver/ 8 https://bitbucket.org/davaeron/zeus/

23

http://docs.seleniumhq.org/projects/ webdriver/
https://bitbucket.org/davaeron/zeus/

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

by 68 distinct URLs. Building a list of URLs from webinjects.txt �les found in the wild
allowed us to deal with real-world targeted pages.

Finding a way to measure the quality of the evaluation results was not an easy task,
since to determine the real injections performed by a sample we should have decrypted
and checked its own WebInject con�guration �le. We initially created a controlled
botnet, and we built a ZeuS sample with a customized webinjects.txt. However, we
wanted to test Prometheus on real samples found in the wild. Therefore, we decided
to manually analyze the results provided by Prometheus to assess their correctness.
We exploited the knowledge created by memory forensic analysis in order to validate
the results. In details whether a di�erence is detected on a URL that does not match
any of the regexes extracted from infected memory dumps, the system �ags it as a false
di�erence. This reduced the volume of data to analyze manually without introducing
any experimental biases.

2.6.2 Delayed activation

One common anti-analysis technique is to delay the real execution of a malware sam-
ple. To this end in order to conduct a sound analysis, it is necessary to check the time
in which a sample is activated. For this reason, we conducted some experiments in
order to estimate the activation time to be used. In the further experiments, all the
infected VMs wait for such time slot before starting the analysis.

In order to estimate the activation time we implemented a speci�c analysis pack-
age for Cuckoo. The module works as follows. Cuckoo starts a virtual machine and
executes the selected malware sample. Afterwards, it starts the browser and waits
for a pre�x amount of time. When the time is expired, the system dumps the appli-
cation memory, and terminates the VM. In the next step, we examined the memory
dump with Volatility. In particular, we used the apihooks 9 plugin to search all the
API hooks installed by the malware. We are interested in looking for any hook on
the WININET DLL. In fact, these hooks are installed by malware to perform Man in the
Browser attacks. Hence, when we �nd any of these hooks it means that the sample
was active. Then, to estimate the activation time we repeated our analyses applying
a bisection algorithm in order to �nd, with a reasonable precision, the instant of acti-
vation of the sample. We repeated these experiments on di�erent active samples. We
obtained several empirical results and in the worst case the activation time was 50
seconds.

2.6.3 False Di�erences discussion

A false di�erence occurs when Prometheus detects a benign di�erence in a web page
and classi�es it as a malicious injection. We observed that the main cause of false dif-
ferences are JavaScript-based modi�cations. Most of the modern websites contain
JavaScript code that modi�es the DOM of the web page at runtime, loading dynami-
cally changing content. Furthermore, sometimes server- side scripts generate di�er-
ent JavaScript code every time the page is requested (e.g., advertisement). Even so, we
managed to discard almost all the legitimate di�erences and, with all our heuristics
enabled, the overall false di�erence rate is 0.70%. Furthermore, most of false di�er-
9 https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/apihooks.py

24

https://github.com/volatilityfoundation/volatility/blob/master/ volatility/plugins/malware/apihooks.py

2.6. Experimental Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

ε

%
FD

R

Figure 2.10: False Di�erence Rate depending on the ε threshold evaluating 68 distinct URLs and using
12 VMs (6 clean ones and 6 infected ones).

ences are distinguishable looking at the results extracted by memory analysis, since a
di�erence detected on a URL that do not match any of the extracted regular expres-
sions is certainly a false di�erence. Therefore, validation through memory forensic
reduces the false di�erence rate to 0.26%. In particular, we preferred to not automat-
ically discard the di�erences related to URLs that do not have references in memory.
This is done because, in the case the memory analysis fails in extracting some regular
expressions, we still consider all the malicious di�erences. We analyzed the e�ects
of the number of VMs, and of the threshold ε (Heuristic 4) on the false di�erences
(Figures 2.10 and 2.11). We observed that the number of VMs is the most e�ective
parameter in the reduction of false di�erences. However, since the number of VMs re-
quired to guarantee a low false di�erence rate is high, at least 25, and this can worsen
the performance because of the overloading, using a high value of ε helps in guaran-
teeing such results with a lower number of VMs (10-12).

One of the previous heuristics used by Zarathustra ignored dynamic DOM di�er-
ences. The assumption was that malware always inserts at least one static node or
attribute, which would be still visible even when JavaScript is disabled. This heuris-
tic had proved to be the most e�ective in reducing false di�erences. However, we
found samples that perform only JavaScript injections, therefore we disabled such as-
sumption. Figure 2.12 shows Zarathustra’s false di�erence rate when this heuristic is
disabled. While Zarathustra reaches 1.0% of false di�erence rate, Prometheus reduces
the false di�erence rate even using less VMs (Figure 2.11).

Table 2.1: Most injected domains

Domain Avg # Injections

ybonline.co.uk 10.244
cbonline.co.uk 9.723
lloydstsb.com 7.482
bbvanetoffice.com 4.275
banesto.es 1.620
gruppocarige.it 1.121
scrigno.popso.it 0.916
isideonline.it 0.861
wellsfargo.com 0.861
uno-e.com 0.747

25

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

Number of DOMs Compared per URL (Number of Virtual Machines)

%
FD

R

Figure 2.11: False Di�erence Rate depending on the number of VMs used processing 68 distinct URLs
with threshold ε = 0.8.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

10

20

30

40

50

60

70

Number of DOMs Compared per URL (Number of Virtual Machines)

%
FD

R

Figure 2.12: Zarathustra’s false di�erences for an increasing number of clean VMs.

2.6.4 Missed Di�erences discussion

A missed di�erence occurs when Prometheus does not identify a malicious injection
in a web page. Since the DOMs comparison process is deterministic, there are only
two cases in which this can happen. The �rst one occurs when a high threshold ε is
used in Heuristic 4 and a sample fails to execute in some of the infected machines.
As explained in §2.5.3, the di�erences that are not present in most of (depending on
ε) the infected machines are �ltered out, so if a sample manifests its behavior just
in few of the infected machines, for example if it uses a randomized activation time,
its injections might be discarded. Although we did not observe such behavior, this
problem can be easily solved by properly tuning the sleep time and the ε threshold.
The second case is also related to Heuristic 4. Since the heuristic is based on the
assumption that each sample injects a static content, if a sample injected di�erent
dynamic content on the same web page every time it is executed, it would evade our
system. However, this case never happened during the evaluation, and all the samples
in our dataset performed static content injections. Samples injecting dynamic content
could require visiting the same pages multiple times on each VM.

26

2.6. Experimental Results

2 3 4 5 6 7 8 9 10 11 12

300

400

500

4.35 s/URL
4.59 s/URL

5.10 s/URL
5.46 s/URL

6.31 s/URL

6.96

Number of DOMs Compared per URL (Number of Virtual Machines)

Ex
ec

ut
io

n
Ti

m
e

(se
co

nd
s)

Figure 2.13: Speed and Scalability of Prometheus: Mean time required to process 68 URLs for each
sample. The labeled points indicate the mean time required to process a single URL.

2.6.5 Results of memory analysis

Prometheus extracted 694 distinct regular expressions through memory forensics
(Table 2.2). As we expected, we observed that true injections were present in URLs
that matched some of the extracted regular expressions. This is a further proof that can
help to distinguish real injections from false di�erences. Another important �nding
that emerged from the results is that not all the regular expressions imply injections.
There are some cases in which some URLs were not injected, even if they were present
in the memory-extracted targets list. The cause of this could be that the injections
failed because the hooking points con�gured in the WebInject con�guration �le were
wrong or old (because the web page changed and does not contain that HTML code
anymore), or simply the sample just monitors the URLs stealing the data submitted
by the victims, without injecting new contents.
In conclusion, our results show that combining both the web page di�erential analysis
and the memory forensic inspection is important in order to gain more insights on the
WebInjects’ behavior, and to guarantee low false di�erences.

2.6.6 Performance

We measured the execution time of Prometheus. Prometheus has been designed
and implemented to parallelize all computations. Furthermore, the approach used to
perform DOMs comparisons is asynchronous, and all computations are executed in
parallel as soon as the required data is available. For this reason, the execution time is
dominated by the time required by the VMs to sequentially visit each URL and dump
its DOM, while the time required to compare DOMs and generate the signatures is neg-
ligible. Prometheus performs a sample analysis on 68 URLs using 10 VMs in about
7 minutes. The sample analysis includes also the memory forensic inspection, which

Table 2.2: Top �ve regular expressions extracted by the memory analysis.

Regular Expression Frequency

http://*odnoklassniki.ru/* 81.3%
http://vkontakte.ru/* 81.3%
odnoklassniki.ru/ 81.3%
https://online.wellsfargo.com/das/cgi-bin/session.cgi* 76.4%
https://ibank.barclays.co.uk/olb/x/LoginMember.do 75.6%

27

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

2 3 4 5 6 7 8 9 10 11 12

300

350

400

450

500

550

600

Number of DOMs Compared per URL (Number of Virtual Machines)

Ex
ec

ut
io

n
Ti

m
e

(se
co

nd
s)

0

20

40

60

80

%
FD

R

Figure 2.14: Trade-o� between Performance and False Di�erence Rate. The dashed line refers to the
execution time required to process 68 URLs. The solid line refers to the False Di�erence Rate

analyzing 68 distinct URLs with threshold ε = 0.8.

is performed in parallel and requires less time than the web page di�erential analysis.
As shown in Figure 2.13, Prometheus is able to process each URL in little more than
4 seconds when 2 VMs are used. The chart shows that Prometheus scales well in-
creasing the number of VMs, with just a little overhead. However, when the number
of VMs is higher than 10 the overhead slightly increases. This is due to the overload
on the single physical machine, and to the fact that all the VMs network tra�c �ows
through the single virtual interface between VirtualBox and the host OS. Figure 2.14
shows the trade-o� between performance and false di�erence rate depending on the
number of VMs.

We measured also the amount of memory required by Prometheus. Prometheus
required at most 15 GB of RAM for a sample analysis using 13 VMs, each of them
set with 1 GB of memory. However, since VirtualBox allocates the entire amount
of memory assigned to the VMs, we inspected the VMs from their internal, and we
measured that each VM required about 300 MB.

2.6.7 Distributed crawling experiment

We ran a distributed crawling experiment to evaluate the generality of the signatures
generated by Prometheus. With generality we mean the applicability, with an accept-
able false positive rate, of a signature to an arbitrary URL. We developed a Chrome
extension that sends to our secure servers the DOMs of the visited web pages. Be-
tween October and December 2014, we distributed our Chrome extension to trusted
users and we collected 8,226 DOMs. To guarantee users’ privacy, we did not record
any information about them, keeping data anonymized. We further set up a machine
on which we installed and con�gured WebDriver to control a Chrome browser, with
our extension embedded, and we automatically downloaded the DOMs of the home
pages of the top 10,000 Alexa10 websites. We then checked the signatures generated
by Prometheus on the 18,226 DOMs collected, assuming that such DOMs are clean.

As we said our signatures are formed by an XPath and a value. Furthermore, each of
our signatures refers, by design, to the URL from which it was generated. That means
that each signature can be used to check, client-side, if the web page of the speci�c
10 http://www.alexa.com/topsites

28

http://www.alexa.com/topsites

2.7. Limitations

URL is currently being rendered on an infected machine. Instead in this experiment,
we want to ignore the URLs from which the signatures are generated, and measure
the amount of DOMs matching at least a signature. In this way, we can evaluate the
generality of such signatures, and measure their dependency from the URLs they refer
to.

We performed the matching process twice. In the �rst case, we considered only
the XPath to verify the match of a signature against a DOM. In the second case, we
considered both the XPath and the content of the signatures. We made also another
distinction, checking all the generated signatures, or only those validated by the mem-
ory analyses. Looking just at the XPath, the percentage of DOMs matching at least one
signature is very high: 97.74% considering all the signatures, and 94.43% considering
those validated through memory forensic. This is mainly caused by signatures a�ect-
ing script tags (e.g., /html[1]/body[1]/script[2]) that are injected by cybercriminals to
verify, client-side, the presence of all the �elds in the forms. Checking both the XPath
and the content of the signatures, the percentage reduces but it is still quite high:
25.99% considering all the signatures, 24.86% only those validated through memory
forensic. This is caused, for example, by signatures relating the import of JQuery (e.g.,
“xpath”: “/html[1]/body[1]/script[2]”, “value”: “@src=‘https://ajax.googleapis.com/ajax/
libs/jqueryui/1.7.1/jquery-ui.min.js’ ”), used by the attackers to create and inject fancy
forms. Since the amount of DOMs matching at least a signature is high in all the
cases, we cannot ignore the dependency of the signatures from the URLs they refer to,
as doing so will cause a high false positive rate during the signature matching process.

In conclusion, this experiment demonstrates that the signatures are strictly depen-
dent on the URLs from which they are generated, and shows the necessity to design
a more sophisticated signatures-matching algorithm that takes in consideration the
relation between signatures and URLs.

2.7 Limitations

One limitation of Prometheus is the assumption behind Heuristic 4: The content
of the injections performed by WebInject-based information stealers is assumed to
be static, which implies that the injections performed by the same malware have al-
ways the same content. The assumption held for all the samples we analyzed, but
Boutin [16] observed a new WebInject mechanism, in which the injected content is
delivered by the C&C server each time the injection is performed. Performing content-
dynamic injections, this mechanism could evade our system. Therefore, our approach
will need to be revised, re�ning the set of heuristics, or visiting the same page multiple
times on each VM in order to extract all the variants.

Our second discussion point is that malware operators could rewrite the injected
code, introducing no-op DOM nodes with the goal of evading the signatures gener-
ated by Prometheus: adding an additional <div/> wrapper to a page (in a random
position), for instance, would circumvent a naive use of our signatures (i.e., if the full
XPath is considered from the root to the leaves). However, none of the samples in our
dataset adopted this technique. In addition, although we leave the implementation of
a proper signature matching algorithm to future work, we are aware that there is an
accuracy trade o� between matching the entire XPath expression of a signatures ver-

29

Chapter 2. Analyzing and Detecting WebInject-based Information Stealers

sus matching only the leaf nodes. In the latter case, the signature veri�cation process
will be more �exible and can be e�ective even in the case of pages subject to large
modi�cations.

Third, the memory forensic analysis could be evaded by samples using custom
sparse data structures, for example splitting the regexes and storing each part sepa-
rately. In this case the analysis would require more expensive carving techniques to
be able to identify and extract the WebInject targets.

Since we take the original banking website as an oracle, an injection that matches
exactly with a benign di�erence would not be considered as malicious. For example,
this happens if the website is updated with a new form input that matches the very
same XPath expression of an injection. Not only this is very unlikely to happen, it is
also very easy to remediate by leveraging feedback from the bank whenever its site
is updated, or possibly by requesting an update of the signatures for that domain. It
is indeed reasonable to envision Prometheus deployed within a bank information
system: this use case would avoid most, if not all, the venues for false di�erences as
a fully up-to-date model of the clean website would always be available. Similarly,
Prometheus can easily monitor authenticated web pages, which are not a limitation
when our system is deployed by the website provider (e.g., bank).

Finally, another obstacle is malware that adopts anti-analysis techniques. However,
Prometheus can be ported, as is, on a bare metal hypervisor [52]. Even if certainly
not impossible, it is de�nitely harder to detect bare metal environments.

2.8 Concluding Remarks

In this chapter we presented Prometheus, an automated system to analyze the client-
side behavior of �nancial Trojans that perform web injections. Prometheus generates
signatures comparing the di�erent DOMs retrieved by infected and not-infected VMs.
These di�erences are then �ltered by using some heuristics, in order to discard legiti-
mate ones. This approach is combined with a memory forensic inspection, to extract
the WebInject target URLs and validate the signatures generated by the web page dif-
ferential analysis. The main advantage of this approach is the independence from
the implementation details of the analyzed malware. We evaluated Prometheus on a
dataset of 135 distinct samples of ZeuS, analyzing 68 real, live URLs of banking web-
sites. The results show that Prometheus correctly identi�ed the injections performed
by the analyzed Trojans with a low false di�erence rate (0.70%). Validation through
memory forensic reduces errors down to 0.26%. Furthermore, Prometheus scales well
with the amount of available resources, and it is able to generate the signatures for 1
URL in about 6 seconds.

Besides the development of a proper signature matching algorithm, future research
should concentrate on more advanced uses of WebInjects. As mentioned in the §4.6,
dynamic-content injections (described in [16]) require visiting the same pages multiple
times on each VM to capture all the di�erent injections. Other advanced WebInjects,
described by Kharouni [50], perform attacks that may not result in DOM modi�ca-
tions. An example is a banking web application that allows to divert a wire transfer
by simply modifying one, single parameter in an outgoing HTTP request, the respec-
tive HTTP response (e.g., page that con�rms the result of a transaction), and all the

30

2.8. Concluding Remarks

subsequent pages. When such fraudulent transfers to an attacker-controlled account
have been made, these modules are able to hide the transactions and revise the current
account balance in order to make the victim unaware of the fraud.

Finally, in this chapter we showed that the DOM is a simple yet e�ective obser-
vation point. We believe that other aspects of the browser behavior can be observed
and compared on infected vs. clean clients, to assess whether the information stealers
cause side e�ects in the browser that can be used as a detection criteria.

31

3. Protecting from Ransomware A�acks

Ransomware [104] is a class of malware that encrypts valuable �les found on the
victim’s machine and asks for a ransom to release the decryption key(s) needed to
recover the plaintext �les. The requested ransom payment is typically in the order
of a few hundreds US dollars [78] (or equivalent in crypto or otherwise untraceable
currency [84]). Clearly, the success of these attacks depends on whether most of the
victims agree to pay (e.g., because of the fear of losing their data). Unfortunately,
according to a thorough survey dated November 2015 [10], about 50 percent of ran-
somware victims had surrendered to the extortion scheme, resulting in million of dol-
lars of illicit revenue. In March 2014, Symantec estimated that the Cryptowall gang
has earned more than $34,000 in its �rst month of activity. In June 2015, the FBI’s In-
ternet Crime Complaint Center [33] reportedly received 992 Cryptowall-related com-
plaints between April 2014 and June 2015, totaling $18M worth of losses. In the �rst
three months of 2016, according to a recent analysis [64], more than $209 million in
ransomware payments were made in the US alone. From a technical viewpoint, ran-
somware families are now quite advanced. While �rst-generation ransomware were
cryptographically weak, the recent families encrypt each �le with a unique symmetric
key protected by public-key cryptography. Consequently, the chances of a success-
fully recovery (without paying the ransom) have drastically decreased [7, 53].
Problem Statement and Vision. Kharraz et al. [51] were the �rst to analyze a large
corpus of ransomware samples. The authors suggest that the �lesystem is a strate-
gic point for monitoring the typical ransomware activity. In this dissertation, we set
the next research objective: Creating a forward-looking �lesystem that transparently
prevents the e�ects of ransomware attacks on the data. We make a step toward such
vision by proposing, implementing and evaluating an approach that combines auto-
matic detection and transparent �le-recovery capabilities at the �lesystem level, all
combined in a ready-to-use Windows driver.
Preliminary Feasibility Assessment. Our �rst goal is to understand how ran-
somware compares to benign software from the �lesystem’s viewpoint. We start by
analyzing in-depth how benign software typically interacts with the �lesystem on
real-world computers. We use the I/O request packets (IRPs) as the focal point of our
analysis, as IRPs are the basic data units originating from high-level operations (e.g.,
read �le, open �le). In practice, we performed the �rst large-scale data collection of
IRPs from real-world, ransomware-free machines, to pro�le the low-level �lesystem
activity in normal conditions. To this end, we developed IRPLogger, a data-collection
agent that we installed on 11 machines used by volunteers for their typical day-to-day
tasks (i.e., personal, o�ce, and development). We anonymized and collected about a
month worth of data, gathering more than 1.7 billion IRPs generated by 2,245 dis-

33

Chapter 3. Protecting from Ransomware A�acks

tinct applications (we will made this data available to other researchers). Using this
collected data as a reference, we populated a set of analysis machines with �les and
directory trees such that they resemble the typical �lesystem organization and con-
tent observed in the 11 real-world machines. This step is essential to create a realistic
environment such that to trigger the ransomware attacks. We then used IRPLogger
to monitor the �lesystem on such machines infected by state of the art ransomware
samples.

Proposed Approach. Our preliminary assessment guided us to design a detection
system based on the combined analysis of entropy of write operations, frequency
of read, write, and folder-listing operations, dispersion of per-�le writes, fraction of
�les renamed, and the �le-type usage statistics. Our approach is to automatically cre-
ate detection models that distinguish ransomware from benign processes at runtime
ShieldFS adapts these models to the �lesystem usage habits observed on the pro-
tected system. Additionally, ShieldFS looks for indicators of the use of cryptographic
primitives. In particular, ShieldFS scans the memory of any process considered as
“potentially malicious,” searching for traces of the typical block cipher key schedules.

A distinctive aspect of ShieldFS is how it copes with code injection, a common
technique used by modern ransomware (as well as other malware). With code injec-
tion, a perfectly legitimate process suddenly executes malicious code. Our detection
mechanism takes into account both the long- and the short-term history of each pro-
cess, and of the entire system. Indeed, we are agnostic with respect to how the infec-
tion has bootstrapped (e.g., malicious executable, remote code execution) and on the
availability of the executable. Rather, we focus on the runtime e�ects on the target
system. In fact, as observed in [96], the activity of modern malware can span across
multiple process and OS facilities, and, more importantly, an isolated sample to ana-
lyze is a luxury in early stage of spreading campaigns. Therefore, detection systems
should not assume that a binary executable is available.

We apply our detection approach in a real-time, self-healing virtual �lesystem that
shadows the write operations. Thus, if a �le is surreptitiously altered by one or more
malicious processes, the �lesystem presents the original, mirrored copy to the user
space applications. This shadowing mechanism is dynamically activated and deacti-
vated depending on the outcome of the aforementioned detection logic. Figure 3.1
depicts the logical activity of ShieldFS in comparison with a traditional �lesystem.

Experimental Results Summary. We evaluated ShieldFS on 688 samples from 11
distinct families, showing that it can successfully protect user data from real-world
attacks performed by recent, state-of-the-art malware families. The system exhibited
remarkable accuracy and generalization capabilities even when evaluated via cross-
validation on the large dataset that we collected from the 11 real-world machines.
Also, we installed ShieldFS on the personal machines in use by 3 volunteers, on which
it correctly identi�ed ransomware processes, and successfully reverted their e�ects.
The performance impact of our prototype implementation is such that ShieldFS is
applicable in real-world settings.

34

3.1. Low-Level I/O Data Collection

Ransom-
ware App 2App 1

File
1

FS

File
2

offended
file

W R W R encrypted
data

Ransom-
ware App 2App 1

File
1

ShieldFS

File
2

offended
file

BW R MW

R

decoy
1

decoy
2

File
2

copy

Figure 3.1: On the right ShieldFS shadowing a �le o�ended by ransomware malicious write (MW), in
comparison to standard �lesystems (on the left).

3.1 Low-Level I/O Data Collection

To understand how ransomware typically interact with the �lesystem in comparison
to benign applications, the main challenge is to be able to observe them in their usual
working conditions (e.g., on a victim’s machine). Since there is no such recent data
for this purpose, we collected it from real, operational desktop computers for several
weeks. First, this provided us with a real-world reference “picture” of how �les and
folders are organized in a typical computer, which is useful to reproduce an environ-
ment that triggers the ransomware activity. Secondly, this approach provided us with
a large dataset of �lesystem access patterns originating from benign applications while
exercised by real-user interactions. This is essential to verify whether ransomware and
benign applications interact with the �lesystem in a signi�cantly di�erent way that
could be leveraged for detection.

To carry out our analysis, we developed IRPLogger, a low-level I/O �lesystem snif-
fer, which we installed on real-world machines in use by 11 volunteers. We can cat-
egorize the participants as “home,” “developer,” or “o�ce” users. As summarized in
Table 3.1, we collected 28.2 GB of compressed and anonymized data, corresponding
to 1,763 million IRPs.

3.1.1 Filesystem Sni�er Details

At the �rst boot, IRPLogger traverses the directory tree of each mounted drive to
collect metadata including total number of �les, number of �les per extension, and
directory depth. The core of IRPLogger is a mini�lter driver [47] that intercepts the
I/O requests generated for each �lesystem primitive invoked by userland code (e.g.,
CreateFile, WriteFile, ReadFile). IRPLogger enriches the raw IRPs with data including
timestamp, writes entropy, and PID. An example log entry (before anonymization) is
as follows:

<time, program name, PID, IRP op, entropy, file info>

When run on the participants’ machines, IRPLogger minimizes and hashes any privacy-
sensitive data such as the �le names and paths. We keep the extension of the accessed

35

Chapter 3. Protecting from Ransomware A�acks

Table 3.1: Statistics of the collected low-level I/O data from 11 real machines during normal usage.

User Win. Usage Data #IRPs #Procs Apps Period Data Rate
ver. [GB] Mln. Mln. [hrs] [MB/min]

1 10 dev 3.4 230.8 16.60 317 34 7.85
2 8.1 home 2.4 132.1 9.67 132 87 2.04
3 10 o�ce 0.9 54.2 5.56 225 17 0.83
4 7 home 4.7 279.9 18.70 255 122 5.18
5 7 home 2.2 138.1 5.04 141 47 4.10
6 10 dev 1.8 100.4 10.30 225 35 2.42
7 8.1 dev 0.8 49.0 3.28 166 8 5.62
8 8.1 home 0.8 43.9 6.33 148 32 2.16
9 8.1 home 7.7 501.8 24.20 314 215 3.21

10 7 home 0.9 57.6 2.63 151 18 4.60
11 7 o�ce 2.6 175.2 4.69 171 28 8.51

Total 28.2 1,763.0 107.00 2245 643 -

�les in clear, as this detail is needed for computing per-type �le statistics and features.
Before collection, the logs are split into sessions and compressed for space e�ciency.

3.1.2 Ransomware Activity Data Collection

We leveraged IRPLogger also to collect ransomware activity data. During Decem-
ber 2015 we used the VirusTotal Intelligence API to obtain the most recent Windows
executables consistently labeled with the main ransomware families (i.e., CryptoWall,
TeslaCrypt, Critroni, CryptoDefense, Crowti). We manually ran each sample to ensure
that it was fully and properly working (e.g., some samples did not receive instructions
and public encryption keys from the attacker’s control servers), so obtaining the 383
active ransomware samples summarized in Table 3.2.

Then, we prepared a set of virtual machines on which we activated IRPLogger
running on top of Windows 7 (64-bit). We installed common utilities such as Adobe
Reader, Microsoft O�ce, alternative Web browsers, and media players. To create a
legitimate-looking system, we included typical user data such as saved credentials,
browser history, and realistic decoy �les (e.g., images, documents), such that to trigger
the samples. We used real �les—collected by randomly crawling web search-engines
results—re�ecting �le-type and directory tree distribution of the aforementioned 11
clean machines. At runtime, our analysis environment emulates basic user activity
(e.g., moving the mouse, launching applications). Following the best practices for
malware experiments suggested by [76], (1) we let the malware executables run for 90

Table 3.2: Statistics of the collected low-level I/O data from 383 ransomware samples.

Ransomware Family No. Samples Data #IRPs
Millions

CryptoWall 157 (41.0%) 8.0 286.7
Crowti 125 (32.6%) 5.7 173.1
CryptoDefense 77 (20.1%) 4.5 171.6
Critroni 14 (3.7%) 0.6 3.0
TeslaCrypt 10 (2.6%) 0.9 29.2
Total 383 19.7 663.6

36

3.2. Approach and Methodology

minutes, (2) we allowed the samples to communicate with their control servers, and
(3) denied any potentially harmful tra�c (e.g., spam) during the experiments. For the
sake of scienti�c repeatability, we are open to provide access to (or the implementation
details of) our analysis environment. After each execution, we saved the IRP logs and
rolled back each virtual machine to a clean snapshot.

3.1.3 Filesystem Activity Comparison

The remarkable di�erences in the features distribution shown in Table 3.3 con�rms
ransomware and benign applications are di�erent �lesystem-wise, and motivates us
to exploit these results to create a full-�edged remediation system.

We focus our analysis on user data, that is, the main target of ransomware attacks.
Contrarily, benign programs, especially system processes (e.g., services, updates man-
ager), access large portions of �les in dedicated folders, or in the system folders. For
this reason, we separate the IRP logs of user folders from the IRPs of system folders.
In practice, we compute the features listed in Table 3.3 twice: �rst on IRP logs of user
paths only (e.g., excluding WINDOWS or Program Files), and then on all paths.

3.2 Approach and Methodology

For clarity, we logically divide our approach into two parts: ransomware activity de-
tection and �le recovery. Our �le-recovery approach is inspired by copy-on-write
�lesystems and consists in automatically shadowing a �le whenever the original one
is modi�ed, as depicted in Figure 3.1. Benign modi�cations are then asynchronously
cleared for space e�ciency, and the net e�ect is that the user never sees the e�ects of
a malicious �le encryption.

We consider all �les as “decoys,” that is, we assume that the malware will reveal its
behavior because, indeed, it cannot avoid to access the �les that it must encrypts to ful-
�ll its goal. The features de�ned in Table 3.3 summarize the I/O-level activity recorded
on these decoys into quantitative indicators of compromise. Thus, the detection and
�le-recovery parts of our approach are tightly coupled, in the sense that we rely on
such decoys to both (1) collect data for detection, and (2) manage the shadowing of
the original �les.

3.2.1 Ransomware FS Activity Detection

Given the results of our preliminary data analysis in §3.1.3, and the aforementioned
assumptions and design decisions, we approach the detection problem as a supervised
classi�cation task. Speci�cally, we propose a custom classi�er trained on the �lesys-
tem activity features de�ned in Table 3.3, extracted from a large corpus of IRP logs
obtained from clean and infected machines. Once trained, this classi�er is leveraged
at runtime to decide whether the features extracted from a live system �t the learned
feature distributions (i.e., no signs of malicious activity) or not.
Process- and System-centric FS Models. A malware can perform all its malicious
actions on a single process, or split it across multiple processes (for higher e�ciency
and lower accountability). For this reason, our custom classi�er adopts several models.
One set of models, called process centric, each trained on the processes individually. A

37

Chapter 3. Protecting from Ransomware A�acks

Table 3.3: We use these features for both our preliminary assessment (§3.1) and as the building block
of the ShieldFS detector (§4.3 §3.3). ShieldFS computes each feature multiple times while
monitoring each process, on various portions of �lesystem activity, as explained in details in

§3.2.1. We normalize the feature values according to statistics of the �le system (e.g., total number
of �les, total number of folders). This normalization is useful to adapt ShieldFS to di�erent
scenarios and usage habits. The rightmost column shows a comparison of benign () vs.

ransomware () programs by means of the empirical cumulative distribution, calculated on the
datasets summarized in Table 3.1 and 3.2, respectively. We notice that ransomware activity is
signi�cantly di�erent than that of benign programs according to our features, suggesting that

there is su�cient statistical power to tell the two types of programs apart.

Feature Description Rationale Comparison

#Folder-
listing

Number of folder-listing opera-
tions normalized by the total num-
ber of folders in the system.

Ransomware programs greedily tra-
verse the �lesystem looking for target
�les. Although �lesystem scanners may
exhibit this behavior, we recall that ran-
somware programs will likely violate
multiple of these features in order to
work e�ciently.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

#Files-
Read

Number of �les read, normalized
by the total number of �les.

Ransomware processes must read all
�les before encrypting them.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

#Files-
Written

Number of �les written, normal-
ized by the total number of �les in
the system.

Ransomware programs typically exe-
cute more writes than benign programs
do under the same working conditions.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

#Files-
Renamed

Number of �les renamed or
moved, normalized by the total
number of �les in the system.

Ransomware programs often rename
�les appending a random extension dur-
ing encryption.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

File type
coverage

Total number of �les accessed,
normalized by the total number of
�les having the same extensions.

Ransomware targets a speci�c set of ex-
tensions and strives to access all �les
with those extensions. Instead, benign
application typically access a fraction of
the extensions in a given time interval.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

Write-
Entropy

Average entropy of �le-write op-
erations.

Encryption generates high entropy
data. Although �le compressors are
also characterized by high-entropy
write-operations, we show that the
combined use of all these features will
mitigate such false positives. Moreover,
we notice that our dataset of benign
applications contains instances of
�le-compression utilities.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

38

3.2. Approach and Methodology

second model, called system centric, trained by considering all the IRP logs as coming
from a single, large “process” (i.e., the whole system). The rationale is that the system-
centric model has a good recall for multi-process malware, but has potentially more
false positives. For this reason, the system-centric model is used only in combination
to the process-centric model.
Incremental, Multi-tier Classi�cation. Although our �le-recovery mechanism is
conservative, we want to minimize the time to decision. Moreover, since the decision
can change over time, all processes must be frequently and e�ciently monitored. To
obtain an acceptable trade o� between speed and classi�cation errors we adopt two
orthogonal approaches.

First, (1) instead of running our classi�ers on the entire available process data, we
split the data in intervals, or ticks. Ticks are de�ned by the fraction of �les accessed
by the monitored process—with respect to the total number of �les in the system. In
this way, we obtain an array of incremental, “specialized” classi�ers, each one trained
on increasingly larger data intervals. For instance, when a process has accessed 2% of
the �les, we query the “2%-classi�er” only, and so on. Our experiments (Figure 3.5)
show that this technique reduces the #IRPs required to cast a correct detection by
three orders of magnitude, with a negligible impact on the accuracy.

Secondly, (2) to account for changes during a process’ lifetime, we monitor both
the long- and short-term history. In practice, we organize the aforementioned in-
cremental classi�ers in a multi-tier, hierarchical structure (as depicted in Figure 3.2),
with each tier observing larger spans of data. At each tick, each tier analyzes the data
up to N ticks in the past, where N depends on the tier level. We label a process as
“ransomware” as soon as at least one of tiers agrees on the same outcome for K con-
secutive ticks. In §3.4 we show that the choice of K has negligible impact on the false
positives.
Example (Code Injection). This example explains how our incremental, multi-tier
models handle a typical case. A benign process (e.g., Explorer) is running, and has
accessed some �les. For the �rst i ticks ShieldFS will classify it as benign. Now, the
Ransomware process injects its code into Explorer’s code region. Referring to Fig-
ure 3.2, if Ransomware does code injection after the 3rd tick, the global-tier model
classi�es Explorer as benign, because the long-term feature values are not be a�ected
signi�cantly by the small, recent changes in the �lesystem activity of Explorer. In-
stead, the tier-1 model identi�es Explorer as malicious, because the tier-1 features are
based only on the most recent IRPs (i.e., those occurring right after the code injec-
tion). The same applies for tier-2 models after the 4th tick, and so on. If K = 3, for
instance, and all the triggered tiers agree on a positive detection, the Explorer process
is classi�ed as malicious at this point in time. This decision, clearly, can change while
more process history is examined.

3.2.2 Cryptographic Primitives Detection

Detecting traces of a cipher within a suspicious process memory, in addition to mali-
cious �lesystem activity, is a further indication of its ransomware nature. The malware
authors’ goal is to e�ciently encrypt large sets of �les, using a single master key per
victim. Thus, instead of relying directly on asymmetric cryptography, which is re-
source intensive, the strategy is to encrypt each �le with a symmetric cipher and a

39

Chapter 3. Protecting from Ransomware A�acks

log (% accessed files)
Model 1 Model 1 Model 1 Model 1 Model 1

Model 2 Model 2

Model 3 Model 3

Model 1

Model 2

Global Model
tie

rs
Long-term
horizon

Short-term
horizon

Figure 3.2: Example of the use of incremental models. At each interval, we check simultaneously
multiple incremental models at all applicable tiers.

per-�le random key, each encrypted with an asymmetric master secret obtained from
the attacker’s control server.
E�cient Block Ciphers. The most widespread, e�cient symmetric-encryption al-
gorithms of choice are fast block ciphers. These ciphers combine the plaintext with a
secret key through a sequence of iterations, known as rounds. In particular, the key is
expanded in a sequence of values, known as the key schedule, which is employed to
provide enough key material for the combination during all the rounds. Since the key
expansion is deterministic and depends on the key alone, it can be pre-computed and
reused, with a signi�cant performance gain (e.g., 2 to 4× in case of AES-128). Indeed,
all the mainstream cryptographic libraries (e.g., OpenSSL, mBED TLS) and the vast
majority of ransomware families do pre-compute the key schedule.
Side E�ects. The main side e�ect of such a pre-computation technique is that the
entire key schedule is (and must remain) materialized in memory during all the en-
cryption procedure. We leverage this side e�ect, and perform a scan of the memory
of the running process, checking, at every o�set, whether the content of the memory
can be obtained as a result of a key schedule computation. Due to the tight constraints
present between the key and the expanded key (i.e., sound key schedules impose a
bijection between them) it is extremely unlikely that a random sequence of bytes ac-
cidentally matches the result of a key expansion, making false positives very unlikely.
False negatives may occur if the key schedule is not contiguously stored in memory.
However, due to the small size of the involved data (i.e., less than a single 4kiB page),
such an event is unlikely to happen due to memory allocation fragmentation.
Note. Although this technique has the bene�t of recovering the secret keys used dur-
ing the encryption, relying exclusively on this criterion for �le recovery would not be
generic and future-proof: Since each �le may be encrypted with a dedicated symmet-
ric key, to guarantee the recoverability of all �les, the memory scanning action should
be continuous, and there is the risk that some keys are simply missed. Instead, by us-
ing our dual approach (i.e., �lesystem and memory analysis) ShieldFS can guarantee
the recoverability of all �les, regardless of how they are encrypted.

3.2.3 Automatic File Recovery Work�ow

When ShieldFS is active, any newly created process enters a so-called “unknown”
state. Whenever such a process opens a �le handle in write or delete mode for the �rst
time (only), ShieldFS copies the �le content in a trusted, read-only storage area. This
storage can be on the main drive or on a secondary drive. In either case, ShieldFS
denies access to this area from any userland process by discarding any modi�cation

40

3.3. ShieldFS System Details

request coming from the upper I/O manager. From this moment on, the process may
read or write such �le, while ShieldFS monitors its activity. When ShieldFS has
collected enough IRPs, the process goes into a “benign,” “suspicious,” or “malicious”
state.

File copies belonging to “benign” processes can be deleted immediately or sched-
uled for asynchronous deletion, as ShieldFS does. Since storage space is convenient
nowadays, leaving copies available for an arbitrarily long time delay does not impose
high costs. In turns, it greatly bene�ts the overall system performance because, by
acting as a cache, it limits the number of copy operations required when the same
�les are accessed (and would need to be copied) multiple times.

For any process that enters the “malicious” state for at least one tick, ShieldFS
checks the presence of ciphers within the process. If any are found, it immediately
suspends the process and restores the o�ended �les. Otherwise, it waits until K pos-
itive ticks are reached before suspending the process, regardless of whether a traces
of ciphers are found.

Processes can enter a “suspicious” state when the process-centric classi�er is not
able to cast a decision. In this case, ShieldFS queries the system-centric model. If it
gives a positive outcome, then the process enters the “malicious” state. Otherwise the
process is classi�ed as “benign.”

3.3 ShieldFS System Details

We implemented ShieldFS following the high-level architecture depicted in Figure 3.3,
and the detection loop de�ned in Algorithm 1. We focused on Microsoft Windows be-
cause it is the main target of the vast majority of ransomware families. We argue that
the technical implementation details may change depending on the target �lesystem
and OS’s internals. However, our approach does not require any special �lesystem nor
OS support. Thus, we expect that it could be ported to other platforms with modest
engineering work.

3.3.1 Ransomware FS Activity Detection

To intercept the IRPs, ShieldFS registers callback functions through the �lter manager
APIs (i.e., FltRegisterFilter). For each IRP, the called function updates the feature val-
ues, using separate kernel worker threads for computation-intensive functions (e.g.,
entropy calculation).
Feature Normalization. To keep the feature values normalized (e.g., number of �les
read, normalized by the total number of �les), the �rst time the ShieldFS service is
run, it scans the �lesystem to collect the �le extensions, number of �les per extensions,
and overall number of �les.

Since the normalization factors change over time (i.e., new, deleted, or renamed
�les), ShieldFS updates them in two ways. One mechanism uses a dedicated kernel
thread to update the normalization factors in real time. This has no performance im-
pact, since ShieldFS already keeps track of the relevant �le operations. However, an
attacker could exploit it to bias the feature values, by manipulating the normalization
factors (e.g., by creating many legitimate, low-entropy �les). The second mechanism
raises the bar for the attacker because it updates the normalization factors periodically

41

Chapter 3. Protecting from Ransomware A�acks

Process 1

address space

Process 2

address space . . .

Disk drive

Process 1 Process 2 ...

I/O Manager (minifilter driver interface)

Process centric
model 1 ...Process centric

model 2

"process 2 is benign", "process 1 is malicious: kill it and restore files"

open("file.txt") read(fp1) ...

System centric model

C
ry

pt
oF

in
de

r

I/O Request Packets (IRPs)

"process 1 is suspicious"

User space

Kernel space

Virtual memory

Shadow drive

"delete process 2 file copies""restore process 1
files copies"

"s
ea

rc
h

fo
r c

ry
pt

o
ke

y
sc

he
du

le
"

Shielder

Feature
values

D
etector

Figure 3.3: High-level overview of ShieldFS. The Detector and the Shielder are Windows mini�lter
drivers, and the CryptoFinder is kernel driver.

(e.g., once a day). In this way, even if an attacker tries to manipulate our normalization
factors, she will need to wait until the next update before starting to access �les with-
out triggering any of the features. Although the second mechanism is more resilient
to such attacks, it is prone to false positives if users create many �les between up-
dates. False positives, however, occur only if a signi�cant number of �les are accessed
in a way that resembles a ransomware activity (i.e., several folder-listing operations,
followed by �le reads or renaming, and high-entropy writes). Taking our dataset of
benign machines monitored for about a month as a reference, the impact of these false
positives is very low compared to the bene�ts of increased resiliency.
Classi�er Details. Each classi�er is implemented as a random forest of 100 trees.
Each tree outputs either −1 (benign) or +1 (malicious). The overall outcome of each
process-centric classi�er is the sum of its trees’ outcome, from −100 (highly benign)
to 100 (highly malicious). In case of a tie (i.e., zero), ShieldFS marks the monitored
process as “suspicious,” and invokes the system-centric classi�er to take the decision.
In case of a second tie, we conservatively consider the process as malicious.
Monitoring Ticks. ShieldFS gives more relevance to small variations in a feature
value when a process has only accessed a few �les. At the same time it minimizes the
total number of models needed, so as to contain the performance impact. For these
reasons, the size of each tick grows exponentially with the percentage of �les accessed

42

3.3. ShieldFS System Details

by a process. After careful evaluation, we used 28 tiers, for intervals ranging from 0.1
to 100%, each one corresponding to a distinct model tier. Adding other ticks beyond
28 would yield no improvements in detection rates, and would instead penalize the
performance.
Countermeasure for Bu�er-�le Abuse. Some versions of Critroni exploit one sin-
gle �le as a write-and-encrypt-bu�er. Speci�cally, the malware moves the target orig-
inal �le in a temporary �le, encrypts it, and then overwrites the original �le with it. As
a result, ShieldFS observes many renaming operations, followed by many read-write
operations on a single �le, thus biasing the feature values.

To counteract this evasion technique, ShieldFS keeps track of when a �le is read
(or written) right after being renamed (or moved), such that to update the feature
values taking into account the net, end-to-end e�ect, as if the bu�er �le was not used.
This mechanism comes at no extra cost, since ShieldFS already keeps track of �le-
renaming operations.

3.3.2 Cryptographic Primitives Detection

ShieldFS checks the memory of processes classi�ed as “suspicious” or “malicious” for
the presence of symmetric cryptographic primitives. For the sake of clarity, we remark
that the output of CryptoFinder is used as an additional, non-essential feature. Hence,
ShieldFS is able to detect even samples that do not show any encryption process, as
long as the �lesystem activity models are su�ciently (i.e., at least K positive ticks)
triggered.

ShieldFS does not make any assumption on how the cipher is implemented by the
malware, save for the materialization of the key schedule. As a proof of concept, we
select AES as our target block cipher, due to its widespread use. AES’s key schedule
expands 128, 192 or 256 key bits into 1408, 1664 or 1920 key schedule bits, respectively.
As a consequence, taking all the 264 possible positions in the address space as candi-
dates, and assuming that the accidental occurrence of a key expansion for a location
is independent from it occurring for a di�erent one, the probability of a false positive
is 2642−1408 = 2−1344 (in the most favorable case), which is negligible for practical
purposes.

CryptoFinder receives the PIDs of suspicious processes by the Detector, through
IOCTL. When triggered, CryptoFinder attaches to a process and obtains the list of
its memory pages. Speci�cally, CryptoFinder looks only at the committed pages, de-
�ned in Windows as the pages for which physical storage has been allocated—either
in memory or in the paging �le on disk. Then, CryptoFinder runs the key-schedule
algorithm on these memory regions and checks whether its expansion occurs. For ef-
�ciency reasons, we stop the inspection of a location as soon as there is a single byte
mismatch.

3.3.3 Automatic File Recovery

We implemented Shielder as a Windows mini�lter driver that monitors �le modi�ca-
tions by registering a callback for those IRP_MJ_CREATE operations which security con-
text parameter Parameters.Create.SecurityContext indicates a “write” or “delete” I/O re-
quest. If the target �le is not shadowed yet, ShieldFS creates a copy before letting the

43

Chapter 3. Protecting from Ransomware A�acks

Algorithm 1 Detection routine for each process.
1: procedure isRansomware(PID, fs_features)
2: crypto← ⊥
3: for tier ∈ {1, ..., top} do
4: if enoughFilesAccessedForT ickOf(tier) then
5: result← ProcessClassifiertier(fs_features)
6: resetFeatureV alues(tier)
7: if result < 0 then
8: Ktier ← 0
9: else

10: crypto← CryptoFinder(PID)
11: if result = 0 then
12: if SystemClassifiertier(fs_features) ≥ 0 then
13: Ktier ++

14: else
15: Ktier ++

16: if crypto ∨ ∃tier : Ktier ≥ Kthreshold then
17:
18: return malicious
19:
20: return benign

request through. With the same technique it monitors the destination of (potentially
malicious) �le-renaming operations, by hooking the IRP_MJ_SET_INFORMATION requests
having the ReplaceIfExists �ag set. File handing and indexing in the shadow drive is
based on the FILE_ID identi�er assigned by NTFS to each �le.
Transaction Log. ShieldFS maintains a transaction log of the relevant IRPs (e.g.,
those resulting from �le modi�cations). Whenever a process is classi�ed as malicious,
ShieldFS inspects such log and restores each �le a�ected by the o�ending process.

File copies are deleted only when the processes that modi�ed the original �le have
been cleared as “benign.” ShieldFS treats the shadow drive as a cache: It avoids shad-
owing the same �le if a fresh copy (i.e., not older than T hours) already exists. Accord-
ing to our experiments, based on the workload of real-world users (obtained form our
large-scale data collection), the age T imposes acceptable overhead (below 1%) and
can be safely set to any number between 1 and 4. In §3.5 we discuss how the choice
of T raises the bar for the attacker who wants to successfully encrypt a large portion
of �les.
Whitelisting of Support Files. Files that have no value for a user are of no inter-
est for ransomware attacks. An example are application-support directories, which
contain cache or temporary �les, which are frequently accessed by benign applica-
tions. These folders can be safely whitelisted to reduce the performance overhead due
to the frequent operations on such �les. To avoid that an attacker could exploit the
whitelisted folders as a “demilitarized zone” where to copy the target �les (prior to en-
crypting them), we adopt the following solution. Any process that has never accessed
a whitelisted folder is considered “suspicious” as soon as it attempts to move �les into
it. The �les o�ended by this operation are preemptively shadowed.
Windows ShadowCopy. Recent Windows versions have a so-called Volume Shadow
Copy Service. However, Windows shadow copies have two issues. First, the copies

44

3.4. Experimental Results

are created only during the next power down and boot cycle. Instead, as we already
mentioned, our approach is designed for short-term backup that can allows users to
restore recently modi�ed �les. Secondly, shadow copies can be easily bypassed and
deleted, as most of recent ransomware families do before starting the encryption pro-
cess [53].

3.4 Experimental Results

As we did for our preliminary analysis (§3.1.2), we evaluated ShieldFS on an analysis
environment with virtual machines provisioned so as to mimic the �le content and
organization of potential victim machines.

We �rst performed a thorough cross validation to assess (1) the generalization capa-
bilities of our classi�ers, and (2) the impact of the parameter choice on the overall de-
tection quality and performance. Second, we infected physical machines in use by real
users (for their day-to-day activities) with 3 samples of ransomware families. ShieldFS
was able to detect their activity and fully recover all the compromised �les. Third,
we evaluated the detection and �le-recovery capabilities against ransomware samples
that ShieldFS has never seen before. Last, we measured the performance overhead
of ShieldFS by considering the typical usage workload, where “typical” refers to our
initial large-scale collection of I/O �lesystem logs.

A video demo of ShieldFS in action is available on YouTube at [5].

3.4.1 Detection Accuracy

Cross validation allows to reveal the presence of over�tting-induced biases and thus is
a crucial aspect of any machine-learning-based approach. We conducted three cross-
validation experiments to evaluate the quality of the Detector on our dataset of 383
ransomware samples and 2,245 benign applications from the 11 user machines. We
count positive or negative detections at the process granularity, and calculate the TPR
and FPR based on the true overall number of benign and ransomware processes.
10-fold Cross Validation. We calculated the true- and false-positive rate on 10 ran-
dom train/test splits. Figure 3.4 and 3.5 show the TPR and FPR in function of the min-
imum percentage of �les, and #IRPs, respectively, needed to cast the decision. The
results show the bene�t of the system-centric model as a tie breaker, and the incre-
mental approach as an early detector, which requires orders of magnitude less IRPs
to cast a decision, with almost no impact on the FPR (i.e., from 0.0 to 0.00015 in the
worst case).
One-machine-o� Cross Validation. To further show the independence of our de-
tection results from the speci�c machine that generates the benign subset of training
and testing data, we performed a per-machine cross validation. We selectively re-
moved the data of one machine from the training set, and used it as the testing set.
We repeated this procedure for each of the 11 machines.

Table 3.4 shows (1) that ShieldFS has no strong dependency from the training-
testing data split, and (2) con�rms that the system-centric model is useful to reduce
FPs by acting as a tie breaker.
Causes of False Positives. We found only two cases of false positives. For the �rst
user machine, the detector triggered because explorer.exe biased the normalization,

45

Chapter 3. Protecting from Ransomware A�acks

0.96

0.98

1
TP

R

Process centric
System centric

10−3 10−2 10−1 100
0

0.02

0.04

Fraction of �les accessed (log. scale)

FP
R

Figure 3.4: 10-fold Cross Validation: Average and standard deviation of TPR and FPR with process- vs.
system-centric detectors.

by accessing a very large number of �les (more than the normalization factors, which
were not up to date). This motivated us to implement the mechanism that live-updates
the system-wide, feature counts for normalization (rather than doing such an update
periodically). This eliminates the false positives, creating however a small opportunity
for the attacker to bias the normalization factors. This trade o� is clearly inherent in
the statistical nature of ShieldFS.

Interestingly, in 4 out of 11 machines we found activity of the WinRar �le-compres-
sion utility, which performed high-entropy writes. Nevertheless, WinRar was cor-
rectly classi�ed as benign, thanks to the contribution of the remainder features.

The second false positive was Visual Studio, which wrote 175 �les, with a very high
average entropy (0.948). This was an isolated case, which happened only on one of
the 32 Visual Studio session recorded in our dataset.
Parameter Setting. The choice of K , the number of consecutive positive detections
required to consider a process as malicious, can be set to minimize the FPR to zero,
at the price of a very small variation (within +/-0.5%) of TPR. Or vice versa. Table 3.5
shows that setting K = 3 maximizes the TPR, with very few false positives. Instead,
with K = 6, ShieldFS did not identi�ed a sample that performed injection into a be-

Table 3.4: FPR with One-machine-o� Cross Validation

User FPR [%]
Machine Process System Outcome

1 0.53 23.26 0.27
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 0.00 1.20 0.00
5 0.22 45.45 0.15
6 0.00 4.76 0.00
7 0.00 88.89 0.00
8 0.00 0.00 0.00
9 0.00 0.00 0.00

10 0.00 0.00 0.00
11 0.00 0.00 0.00

46

3.4. Experimental Results

0

0.5

1

TP
R

Without incremental, multi-tier models

100 101 102 103 104 105 106
0

0.5

1

Number of I/O request packets (log. scale)

TP
R

Process centric
System centric

Figure 3.5: 10-fold Cross Validation: TPR of process- and system-centric detectors, with and without
the incremental, multi-tier approach. FPR ranges from 0.0 to 0.0015.

nign process and that encrypted �les very slowly. Generally, false negatives are more
expensive than false positives in ransomware-detection problems, thus we advise for
values of K that maximize the TPR. This has the additional bene�t of reducing the
number of IRPs required for a correct detection.

3.4.2 Protection of Production Machines

In order to evaluate our system in real scenarios, we tested ShieldFS on three distinct
real machines (running Windows 7 and 10), in use by real users for their day-to-day
activities for years, containing 2,319, 165,683, and 144,868 �les, respectively. We ran-
domly selected 3 samples1 from our dataset (Critroni, TeslaCrypt, and ZeroLocker)
and manually analyzed them to ensure that they were not stealing any personal in-
formation. After cloning the hard drives as a precaution, we installed ShieldFS, and
infected the machines. All the three samples were correctly detected and all the af-
fected �les were correctly restored automatically.

3.4.3 Detection and Recovery Capabilities

We setup an environment as described in §3.1.2, with dummy �les to reproduce a
real-user setting. Moreover, we stored 9,731 �les typically targeted by ransomware
attacks (e.g., images and documents of various formats), of which we pre-calculated
1 e89f09fdded777ceba6412d55ce9d3bc, 209a288c68207d57e0ce6e60ebf60729, bd0a3c308a6d3372817a474b7c653097

Table 3.5: 10-fold Cross-Validation: Choice of K.

K FPR TPR IRPs

1 0.208% 100% 35664
2 0.076% 100% 43822
3 0.038% 100% 67394

4 0.019% 99.74% 80782
5 0.019% 99.74% 104340
6 0.000% 99.74% 135324

47

Chapter 3. Protecting from Ransomware A�acks

the MD5 for integrity veri�cation after each experiment. We then trained ShieldFS
on the large dataset of IRP logs collected as part of our preliminary analysis.
Dataset of Unseen Samples. In addition to the cross-validation experiments on 383
samples, which already show the predictive and genralization capabilities of ShieldFS,
we obtained 305 novel, working ransomware samples and let them run for 60 minutes
on the machines protected by ShieldFS. This dataset (Table 3.6) is completely disjoint
from the training dataset and was collected from VirusTotal as of May 2016. Interest-
ingly, seven families (Locky, CryptoLocker, TorrentLocker, DirtyDecrypt, PayCrypt,
Troldesh, ZeroLocker) are not present in the training dataset.
Detection of Unseen Samples. ShieldFS prevented malicious encryption in 100%
of the cases, by restoring the 97,256 compromised �les, and correctly detected 298
(97.70%) of the samples without any false positive. The top-tier, process-centric model
contributed to detecting 95.2% of the samples, the incremental models were e�ective
mainly in the case of ransomware performing code injections (4.3%), as expected. In
one case, the incremental process-centric models identi�ed the malicious process as
suspicious and ShieldFS invoked the system-centric model to take a �nal decision.
CryptoFinder contributed to the detection of 69.3% of the samples.
Causes of False Negatives. Seven samples remained inactive for most of our analy-
sis and encrypted just few �les (less than 30). Fortunately, thanks to our conservative
�le-shadowing strategy, ShieldFS had copied the original �les, allowing their recov-
ery. We investigated the cause of false negatives in the detection of cryptographic
primitives and we found no evidence showing that the remaining samples were us-
ing AES. Therefore, we conclude that CryptoFinder’s detection capability of AES key
schedule is 100%.

3.4.4 System Overhead

We evaluated the performance overhead and additional storage space requirements of
ShieldFS.
User-Perceived Overhead. Our goal is to quantify, with good approximation, how
much would ShieldFS slow down the typical user’s tasks, on average. To this end, we

Table 3.6: Dataset of 305 unseen samples of 11 di�erent ransomware families.

Ransomware No. Detection
Family Samples Rate

Locky 154 (50.5%) 150/154
TeslaCrypt 73 (23.9%) 72/73
CryptoLocker 20 (6.6%) 20/20
Critroni 17 (5.6%) 17/17
TorrentLocker 12 (3.9%) 12/12
CryptoWall 8 (2.6%) 8/8
Troldesh 8 (2.6%) 7/8
CryptoDefense 6 (2.0%) 5/6
PayCrypt 3 (1.0%) 3/3
DirtyDecrypt 3 (1.0%) 3/3
ZeroLocker 1 (0.3%) 1/1
Total 305 298/305

48

3.4. Experimental Results

0

0.2

0.4

0.6

File size

O
ve

rh
ea

d
[×

] Sequence 1 = Open + Read

0

2

4

O
ve

rh
ea

d
[×

] Sequence 2 = Open + Write (and backup)

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B

0

0.5

1

1.5

O
ve

rh
ea

d
[×

] Sequence 3 = Open + Write (no backup)

Figure 3.6: Micro Benchmark: Average overhead.

distributed to 5 users a new version of IRPLogger that collected �le-size information in
addition to the usual IRP logs. Then, we reconstructed 6 hours worth of sequences of
high-level system calls by analyzing about one month of low-level IRPs. For example,
one IRP_MJ_CREATE followed by one or more IRP_MJ_READ corresponds to a FileRead call,
and so on, by abstraction. Then, we estimated the perceived overhead for a user-level
task as the average overhead due to all the �lesystem calls executed during such task,
taking into account the size of the a�ected �les. We �xed 10 minutes as the duration
of a user-level task, that is, while the user is interacting with the computer uninter-
ruptedly. Figure 3.7 shows that the average estimated overhead is 0.26×. Indeed, we
barely perceived it while using a machine protected by ShieldFS.
Runtime Overhead: Micro Benchmarks. We also evaluated the in-the-small per-
formance impact of ShieldFS. We considered three sequences of �lesystem opera-
tions on a series of 1,800 �les of 18 varying sizes (from 1 KB to 128 MB): (1) open and
read the �les, (2) open and write them when they are not backed up already, and (3)
open and write them when they are already backed up. We run each sequence 100
times on a Windows 10 machine equipped with a rotational hard disk drive, with and
without ShieldFS, rebooting the machine after each test to avoid caching side e�ects.

Table 3.7: Measured storage space requirements on real-users machines (T = 3h) and cost estimation
considering $3¢/GB.

User Period Storage Required Storage Overhead Max Cost
[hrs] Max [GB] Avg. [GB] Max [%] Avg [%] [USD]

1 34 14.73 0.63 4.29 0.18 44.2¢
2 87 0.62 0.19 0.95 0.29 1.86¢
4 122 9.11 0.73 8.53 0.68 27.3¢
5 47 2.41 0.56 5.49 1.29 7.23¢
7 8 1.00 0.39 3.35 1.28 3.00¢

49

Chapter 3. Protecting from Ransomware A�acks

0 50 100 150 200 250 300 350

0

0.2

0.4

Backup happens (T = 3h)

Time [min]

O
ve

rh
ea

d
[×

]

Figure 3.7: Average (and standard deviation) perceived overhead introduced by ShieldFS on 5
real-users machines.

Figure 3.6 shows the overhead of each sequence. The overhead is higher (1.8–3.8×)
when �les need to be backed up, and remarkably lower (0.3–0.9×) when �les are
already backed up.
Storage Space Requirements. During our experiments we kept track of the storage
space required by ShieldFS to keep secure copies. Table 3.7 shows that with T = 3h,
in the worst case (i.e., all �les need to be backed up within T), ShieldFS requires 14.73
GB of additional storage space (i.e., $44.2¢).
Parameter Setting. The T parameter determines how often ShieldFS creates copies
of the �les that require to be shadowed. Table 3.8 shows the average overhead and
storage space required for T ∈ [1, 4] hour(s) measured during our experiments. We
can conclude that T does not signi�cantly in�uence the overall performance overhead.
Thus, as further discussed in §3.5, we advise to set it as high as to match the on-
premise, long-term backup schedule.

3.5 Discussion of Limitations

From the results of our experiments we discuss the following list of limitations, in
decreasing order of importance.
Susceptibility to Targeted Evasion. Ticks are essentially the “clock” of ShieldFS.
At each tick, a decision is made. Since ticks are not based on time, but on the percent-
age of �les accessed, an adversary may be interested in preventing to trigger the ticks,
so to avoid detection. However, the only way to do it is to access zero or very few
�les, which is clearly against the attacker’s goal. Alternatively, in order not to cause a
signi�cant change in the feature values after code injection, an adversary may try to
�nd an existing, benign host process that has already accessed about as many �les as
the attacker wants to encrypt. This is very unlikely because, by design, such process
can exist only if it has not already triggered the detection (otherwise ShieldFS would
have already killed it already). That is, only if it has accessed a large number of �les

Table 3.8: In�uence of T on runtime and storage overhead.

T Runtime Overhead Storage Overhead

[hrs] Avg [×] Std.dev [×] Max [GB] Avg [GB] Max [%] Avg [%]
1 0.263 0.0404 5.4838 0.4040 4.353 0.586
2 0.262 0.0404 5.8402 0.4875 4.762 0.720
3 0.261 0.0403 5.5768 0.4994 4.522 0.746
4 0.260 0.0403 5.5927 0.5150 4.545 0.766

50

3.5. Discussion of Limitations

without violating the other features (e.g., mainly read operations, low entropy �les).
Assuming that the malware can �nd such a benign process to inject its malicious code,
the process’ features will start to change as soon as the malicious code will start en-
crypting the aforementioned �les. At some point, the malicious code cannot avoid
performing many write operations of high-entropy content.

If the malware knows precisely the thresholds of the classi�ers and value of the
parameter T , it could attempt to perform a mimicry attack [93] encrypting few �les
so as to remain below the thresholds until T hours. In this way, it will be identi�ed as
benign and the victim will loose the original copies. However to remain unaccount-
able, a ransomware cannot encrypt all the �les in one round, so it would need to repeat
this procedure every T hours. Setting T to large values will raise the bar, by forcing
the attacker to wait for long. On the other hand, setting T very low guarantees that
the recent (benign) modi�cations are accounted in the secondary drive. In this way, if
a restore is needed, a very recent (up to T) copy is available. In other words, T allows
to trade o� mimicry resilience versus data freshness.
Multiprocess Malware. Ransomware injecting malicious code into many benign
processes, each of them performing a small part of the malicious activity, could evade
our detector if the attacker knows the feature values—which, is challenging for a user-
land malware. Multiprocess malware is partially mitigated by the combination of
system-centric models with the incremental, multi-tier strategy. Nevertheless, ran-
somware could perform encryption very slowly. This however, is against the attack-
ers’ goal, who wants to encrypt all �les before users can notice any change. Last, even
if a malicious process is not detected, thanks to our conservative �le-shadowing ap-
proach, a user noticing the encrypted �les can manually restore the original �les from
the copies.
Cryptography Primitives Detection Evasion. A possible cause of false negatives
of our approach is the use of dedicated ISA extensions of modern CPUs (e.g., Intel
AES-NI [44]) to perform the encryption o� memory, using a dedicated register �le.
However, in such case the malware binary code would contain those speci�c instruc-
tions, not to mention that the malware will work only if the victim machine supports
the Intel AES-NI extensions.

The current proof-of-concept implementation of ShieldFS supports only the de-
tection of AES. Supporting other ciphers is an implementation e�ort, as our approach
is valid for the majority of symmetric block ciphers.
Tampering with the Kernel. ShieldFS runs in a privileged kernel mode. We im-
plemented ShieldFS to be “non unloadable” at runtime, even by administrator users.
Furthermore, ShieldFS is able to deny any operation that attempts to delete or modify
the driver binaries. An administrator-privileged process, however, could try to pre-
vent ShieldFS service from starting at boot, by modifying the Windows registry, and
force a reboot. This limitation can be mitigated by embedding our approach directly
in the kernel without the need for a service. Doing so, the only chance to bypass our
system is to compromise the OS kernel.
Preventing Denial of Service. A malware could attempt to compromise ShieldFS
itself by �lling up the shadow drive. First, in this scenario it is likely that ShieldFS de-
tects and stops the malicious process before it �lls the entire space. Second, ShieldFS
makes the shadow drive read-only, denying any modi�cation request coming from

51

Chapter 3. Protecting from Ransomware A�acks

userland processes. Last, ShieldFS could monitor the shadow drive and alert the user
when it is running out of space.

3.6 Related Works

Kharraz et al. [51] studied the behavior of scareware and ransomware, observing its
evolution during the last years, in terms of encryption mechanisms, �lesystem inter-
actions, and �nancial incentives. They suggested some potential defenses, but eval-
uating them was out of the scope of their paper. Indeed, while [51] analyzed the
�lesystem activity of ransomware, the authors (and any other work) did not focus on
analyzing the �lesystem activity of benign applications, which we found crucial to
build a robust detector.

Concurrently and independently to our work, Kharraz et al. [49] and Scaife et
al. [79] published two ransomware detection approaches, respectively UNVEIL and
CryptoDrop. Although they both look at the �lesystem layer to spot the typical ran-
somware activity, they do not provide any recovery capability. Also, their approaches
do not include identi�cation of cryptographic primitives. Di�erently from our work,
UNVEIL includes text analysis techniques to detect ransomware threatening notes and
screen lockers, along the line of [9], and CryptoDrop uses similarity-preserving hash
functions to measure the dissimilarity between the original and the encrypted content
of each �le. These two techniques are complementary to ours, and can be added to
ShieldFS as additional detection features.

Andronio et al. [9] studied the ransomware phenomenon on Android devices, pro-
posing an approach, HelDroid, to identify malicious apps. Besides the di�erence in the
target platform, HelDroid looks at how ransomware behaves at the application layer,
whereas we focus on its low-level behavior. Thus, their approach is complementary
to ours, also because it is based on static analysis.

Our data-collection and mining phase is somehow akin to what Lanzi et al. [56]
did to perform a large-scale collection of system calls, with the purpose of studying
malware behavior by means of the system and API call pro�les. We focus on IRPs
instead as they better capture ransomware behavior.

Lestringant et al. [58] applied graph isomorphism techniques to data-�ow graphs
in order to identify cryptographic primitives in binary code. Although [58] works at
binary level, whereas ShieldFS identi�es usage of cryptographic primitives at run-
time, it is a valid alternative that can be used to complement our CryptoFinder.

3.7 Concluding Remarks

In this chapter, we presented an approach to make modern operating systems more
resilient to malicious encryption attacks, by detecting ransomware-like behaviors and
reverting their e�ects safeguarding the integrity of users’ data.

We foresee ShieldFS as a countermeasure that keeps an always-fresh, automatic
backup of the �les modi�ed in the short term. We argue that, although older �les can
be asynchronously backed up with on-premise systems (because they have less strict
time constraints), recent �les may be of immense value for a user (e.g., time-sensitive
content); even the loss of a small update to an important �le may end up in the deci-
sion to pay the ransom, because the existing backup is simply too old. With traditional

52

3.7. Concluding Remarks

backup solutions alone there exist a trade o� between performance, space and “fresh-
ness,” not to mention that a ransomware may encrypt the backups as well! Generally,
traditional solutions work well for incremental backups, long-term archives with no
real-time constraints. Pushing such backup solutions to tighter time constraints while
keeping reasonable system performance may result in side e�ects. For instance, once
a �le is encrypted by a ransomware, there exists a risk that it may replace the plain-
text backup. Instead, ShieldFS works at a lower level. Thus, it is transparent to a
ransomware that works at the �lesystem’s logical view. Therefore, it is best suited for
the protection of short-term �le changes, leaving traditional backups protecting from
long-term �le changes.

53

4. Detecting Obfuscated Privacy Leaks in Mobile Ap-
plications

One main concern of mobile app users is the leakage of private information: Mo-
bile apps, and third-party advertisement (ad) libraries in particular, extensively col-
lect private information and track users in order to monetize apps and provide tar-
geted advertisements. In response, the security community has proposed numerous
approaches that detect whether a given app leaks private information to the network
or not. The majority of approaches utilize data �ow analysis of the app’s code, both
through static and/or dynamic taint analysis. Tools based on static taint analysis, such
as FlowDroid [11], identify possible sources of private information and determine how
their values �ow throughout the app and, eventually, to sinks, such as the network.
Dynamic taint analysis tools, such as TaintDroid [29], execute apps in an instrumented
environment and track how private information is propagated while the app is run-
ning. Finally, AppAudit combines both approaches, determining critical �ows that
leak data through static analysis and verifying them through an approximated dy-
namic analysis [101].

While these tools provide useful insights, they su�er from several limitations that
a�ect their adoption, especially when the threat model considers apps that try to hide
the fact that they are leaking information. Adversaries can deliberately add code con-
structs that break the �ow of information throughout an app and make data �ow
analysis approaches “lose track” of tainted values. Related works [19, 77] have al-
ready demonstrated how an app can, for example, use indirections through implicit
control �ows or through the �le system to e�ciently bypass static and dynamic data
�ow analysis. Furthermore, static and dynamic analysis approaches for mobile apps
usually only inspect data �ow in Dalvik bytecode (i.e., the Java component of the app)
and miss data leaks in native code components, which are becoming more and more
prevalent [8, 61]. Both static and dynamic analysis can also have false positives, mainly
due to a phenomenon called overtainting: imprecisions in modeling how information
�ows through speci�c instructions, or imprecisions introduced to make the analysis
scalable might establish that a given value is “tainted” with private information even
when, in fact, it is not.

Since static analysis does not perform real-time detection of privacy leaks, and dy-
namic analysis requires heavy instrumentation, and is thus more likely to be used by
app stores than by end users, researchers have recently proposed a more light-weight
alternative: identifying privacy leaks on the network layer through tra�c intercep-
tion [62, 82, 57, 73, 74]. However, obfuscation is out-of-scope for the majority of ap-
proaches as they perform simple string matching and essentially “grep” for hardcoded
values of private information and some well-known encodings such as Base64 or stan-

55

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

dard hashing algorithms. ReCon [74] is the most resilient to obfuscation as it identi�es
leaks based on the structure of the HTTP requests, for example by learning that the
value following a “deviceid” key in a HTTP GET request is probably a device ID. Still,
the underlying machine learning classi�er is limited by the data it is trained on, which
is collected through TaintDroid and manual analysis—if the labelling process misses
any leak and its corresponding key, e.g., due to obfuscation or custom encoding, Re-
Con will not be able to detect it.

In general, the transformation of privacy leaks, from simple formatting and en-
coding to more complex obfuscations, has gotten little attention so far. Only Bayes-
Droid [91] and MorphDroid [37] have observed that the leaked information does not
always exactly match the original private information, but focused on leaks consisting
of subsets or substrings of information instead of obfuscation. It is unclear to what
extent apps can hide their information leaks from state-of-the-art tools. For this pur-
pose, we developed a novel automatic analysis approach for privacy leak detection in
HTTP(S) tra�c that is agnostic to how private information is formatted or encoded.
Our work builds on the idea of observing network tra�c and attempts to identify leaks
through a technique similar to the di�erential analysis approach used in cryptogra-
phy: �rst, we collect an app’s network tra�c associated with multiple executions;
then, we modify the input, i.e., the private information, and look for changes in the
output, i.e., the network tra�c. This allows us to detect leaks of private information
even if it has been heavily obfuscated.

The idea to perform di�erential black-box analysis is intuitive, and in fact, has al-
ready been explored by Privacy Oracle [48] for the detection of information leaks in
Windows applications. One of the main challenges of performing di�erential analy-
sis is the elimination of all sources of non-determinism between di�erent executions
of an app. Only by doing this one can reliably attribute changes in the output to
changes in the input, and con�rm the presence of information leaks. While Privacy
Oracle was mainly concerned with deterministic executions to eliminate OS artifacts
that vary between executions and could interfere with the analysis, we observed that
non-deterministic network tra�c poses a far greater challenge when analyzing mod-
ern apps. Due to the frequent use of random identi�ers, timestamps, server-assigned
session identi�ers, or encryption, the network output inherently di�ers in every ex-
ecution. These spurious di�erences make it impractical to detect any signi�cant dif-
ferences caused by actual privacy leaks by simply observing variations in the raw
network output.

One key contribution of this work is to show that, in fact, it is possible to explain the
non-determinism of the network behavior in most cases. To this end, we conducted a
small-scale empirical study to determine the common causes of non-determinism in
apps’ network behavior. Then, we leveraged this knowledge in the development of
a new analysis system, called Agrigento, which eliminates the root causes of non-
determinism and makes di�erential analysis of Android apps practical and accurate.

Our approach has the key advantage that it is “fail-safe”: we adopt a conservative
approach and �ag any non-determinism that Agrigento cannot eliminate as a “po-
tential leak.” For each identi�ed leak, Agrigento performs a risk analysis to quantify
the amount of information it contains, i.e., its risk, e�ectively limiting the channel
capacity of what an attacker can leak without raising an alarm. We performed a se-

56

4.1. Motivation

ries of experiments on 1,004 Android apps, including the most popular ones from the
Google Play Store. Our results show that our approach works well in practice with
most popular benign apps and outperforms existing state-of-the-art tools. As a result,
Agrigento sheds light on how current Android apps obfuscate private information
before it is leaked, with transformations going far beyond simple formatting and en-
coding. In our evaluation, we identi�ed several apps that use custom obfuscation and
encryption that state-of-the-art tools cannot detect. For instance, we found that the
popular InMobi ad library leaks the Android ID using several layers of encoding and
encryption, including XORing it with a randomly generated key.

It is not surprising that developers are adopting such stealth techniques to hide
their privacy leaks, given the fact that regulators such as the Federal Trade Commis-
sion (FTC) have recently started to issue sizable �nes to developers for the invasion
of privacy of their users [34, 35]: aforementioned InMobi for example is subject to
a penalty of $4 million and has to undergo bi-yearly privacy audits for the next 20
years for tracking users’ location without their knowledge and consent [36]. Also,
counterintuitively to the fact that they are collecting private information, app devel-
opers are also seemingly becoming more privacy-aware and encode data before leak-
ing it. Unfortunately, it has been shown that the structured nature of some device
identi�ers makes simple techniques (e.g., hashing) not enough to protect users’ pri-
vacy [28, 38]. Consequently, on one hand there is a clear motivation for developers
to perform obfuscation—either to maliciously hide data leaks, or to secure user data
by not transmitting private information in plaintext—on the other hand privacy leak
detection tools need to be agnostic to any kind of obfuscation.

4.1 Motivation

This section discusses a real-world example that motivates our work. Consider the
snippet of code in Figure 4.1. The code �rst obtains the Android ID using the Java
Re�ection API, hashes the Android ID with SHA1, XORs the hash with a randomly
generated key, stores the result in JSON format, and encrypts the JSON using RSA.
Finally, it sends the encrypted JSON and the XOR key through an HTTP POST request.

Depending on how this functionality is implemented, existing tools would miss
the detection of this leak. Existing approaches based on static analysis would miss
this privacy leak if the functionality is implemented in native code [8], dynamically
loaded code [69], or in JavaScript in a WebView [63]. Furthermore, the use of the Java
Re�ection API to resolve calls at runtime can severely impede static analysis tools.

More fundamentally, the complex lifecycle and component-based nature of An-
droid apps make tracking private information throughout an app extremely challeng-
ing, and both static and dynamic approaches are sensitive to the disruption of the
data �ow. For instance, many existing tools would miss this leak if this functionality
is implemented in di�erent components. Similarly, if the app �rst writes the private
information to a �le, e.g., its settings, and only later reads it from there to transmit it
via a network sink, any data �ow dependency would be lost. Furthermore, data �ow
is also lost when the implementation is incomplete and fails to propagate data �ows
through relevant functions: TaintDroid for example does not track data �ows through
hashing functions [71].

57

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

StringBuilder json = new StringBuilder();
// get Android ID using the Java Reflection API
Class class = Class.forName("PlatformId")
String aid = class.getDeclaredMethod("getAndroidId",

Context.class).invoke(context);
// hash Android ID
MessageDigest sha1 = getInstance("SHA-1");
sha1.update(aid.getBytes());
byte[] digest = sha1.digest();
// generate random key
Random r = new Random();
int key = r.nextint();
// XOR Android ID with the randomly generated key
byte[] xored = customXOR(digest, key);
// encode with Base64
String encoded = Base64.encode(xored);
// append to JSON string
json.append("O1:\'");
json.append(encoded);
json.append("\'");
// encrypt JSON using RSA
Cipher rsa = getInstance("RSA/ECB/nopadding");
rsa.init(ENCRYPT_MODE, (Key) publicKey);
encr = new String(rsa.doFinal(json.getBytes()));
// send the encrypted value and key to ad server
HttpURLConnection conn = url.openConnection();
OutputStream os = conn.getOutputStream();
os.write(Base64.encode(encr).getBytes());
os.write(("key=" + key).getBytes());

Figure 4.1: Snippet of code leaking the Android ID using obfuscation and encryption. The example is
based on real code implemented in the popular InMobi ad library.

Existing black-box approaches that analyze the network tra�c would miss the de-
tection of this leak as well, as they only consider basic encodings, such as Base64
or standard hashing algorithms, and cannot handle complex obfuscations techniques
that combine multiple di�erent encodings and algorithms such as the example code
in Figure 4.1.

Our work attempts to �ll this gap: we focus on designing and developing an ap-
proach able to detect privacy leaks even when custom obfuscation mechanisms are
used. Our approach is black-box based, so it is not a�ected by code obfuscation or
complex program constructs. Furthermore, our approach can handle obfuscations of
the actual data since it does not look for speci�c tokens that are known to be associ-
ated with leaks, but rather treats every inexplicable change in the network tra�c as a
potential leak.

We stress that the example we discussed in this section is not synthetic, but it
is actually the simpli�ed version of a snippet taken from one of the most popular
apps in the Google Play Store. Speci�cally, this example is the simpli�ed version of a
functionality implemented in the popular InMobi ad library. We also note that this case
of nested encodings and encryption is not just an isolated example: our experiments,
discussed at length in §4.5, show that these obfuscated leaks occur quite frequently
and that existing black-box approaches are unable to detect them.

58

4.2. Sources of Non-Determinism

4.2 Sources of Non-Determinism

One of the key prerequisites for performing di�erential analysis is to eliminate any
sources of non-determinism between di�erent executions. Only by doing so, one can
reliably attribute any changes in the network output following changes in private in-
put values to information leakage. While previous work has focused on deterministic
executions through the use of OS snapshots [48], according to our experiments the
network itself is by far the largest source of non-determinism.

When executing an app multiple times on exactly the same device, with the same
settings, and using the same user input, one would intuitively expect an app to produce
exactly the same (i.e., deterministic) network tra�c during every execution. However,
our preliminary experiments showed that this is not the case: the network tra�c and
more speci�cally the transmitted and received data frequently changes on every exe-
cution, and even between the same requests and responses during a single execution.

This non-determinism is not necessarily something that is introduced by the app
developer intentionally to evade analysis systems, but, instead, it is most often part of
the legitimate functionality and standard network communication. We conducted a
small-scale study on 15 Android apps randomly selected from the Google Play Store,
and we investigated the most common sources of non-determinism in network tra�c.
We were able to identify the following categories:

• Random values. Random numbers used to generate session identi�ers or, for
instance, to implement game logic. Also, the Android framework provides de-
velopers with an API to generate 128-bit random universally unique identi�ers
(UUID). In the most common scenario, apps use this API to generate an UUID
during the installation process.

• Timing values. Timestamps and durations, mainly used for dates, logging, sig-
natures, and to perform measurements (e.g., loading time).

• System values. Information about the state and the performance of system (e.g.,
information about free memory and available storage space).

• Encrypted values. Cryptographic algorithms use randomness to generate ini-
tialization vectors (IV) and padding.

• Network values. Information that is assigned by a network resource (e.g., cook-
ies, server-assigned session identi�ers).

• Non-deterministic execution. Randomness inherent to the execution of an
app, such as di�erent loading times a�ecting the UI exploration.

4.3 Approach

For any given app, our analysis consists of two main phases. In the �rst phase (see
§4.3.1), called network behavior summary extraction, we execute the app multiple times
in an instrumented environment to collect raw network traces, and contextual infor-
mation, which allows us to attribute the non-determinism that we see in the network
behavior to the sources discussed in §4.2. We then combine these network traces with

59

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

the contextual information to create a contextualized trace for each run. Finally, we
merge the contextualized network traces of all runs into a network behavior summary
of the app.

In the second phase of our approach (see §4.3.2), we run the app again in exactly
the same instrumented environment, with the only di�erence that we change one of
the input sources of private information (e.g., IMEI, location). We then compare the
contextualized trace collected in this �nal run with the network behavior summary
of the previous runs to identify any discrepancy. We perform this comparison in two
steps: di�erential analysis, which identi�es di�erences, and risk analysis, which scores
the identi�ed di�erences to determine potential privacy leaks.

Figure 4.2 shows a high-level overview of our approach, while Figure 4.3 illustrates
the individual steps in more detail using a simpli�ed example.

4.3.1 Network Behavior Summary Extraction

Network Trace & Contextual Information. For each execution of the app in our
instrumented environment, we collect a network trace, which contains the raw HTTP
�ows generated by the app, and contextual information, which contains the values gen-
erated by any of the sources of non-determinism we described earlier. Our approach
here goes beyond simple network tra�c analysis, and includes instrumenting the way
the app is interacting with the Android framework. Speci�cally, Agrigento is able
to eliminate the di�erent sources of non-determinism by intercepting calls from the
app to certain Android API calls and recording their return values, and in some cases
replacing them—either by replaying previously seen values or by returning constant
values. First, Agrigento records the timestamps generated during the �rst run of each
app, and replays the same values in the further runs. Second, it records the random
identi�ers (UUID) generated by the app. Third, it records the plaintext and ciphertext
values whenever the app performs encryption. Finally, the instrumented environment
sets a �xed seed for all random number generation functions, and replaces the values
of system-related performance measures (e.g., free memory, available storage space)
with a set of constants.

Note that when an app uses its own custom encryption routines, or generates ran-
dom identi�ers itself without relying on Android APIs, Agrigento will not be able to
detect these as sources of non-determinism. However, as we explain in the next para-
graph, our approach is conservative, which means this would produce a false positive,
but not a false negative.
Contextualized Trace. We build the contextualized trace by incorporating the con-
textualized information into the raw network trace. To do this, we remove all sources
of non-determinism (i.e., values stored in the contextual information) we encountered
during the execution, by labeling all timestamps-related values, random identi�ers,
and values coming from the network, and decrypting encrypted content by mapping
the recorded ciphertext values back to their plaintext. Essentially, we look at the raw
network trace and try to determine, based on string comparison, values in the HTTP
tra�c that come from potential sources of non-determinism. This is similar to the
techniques that previous works use to �nd certain values of private information in
the network tra�c. The key di�erence is that we do not perform the string matching
to �nd leaks, but, rather, to explain sources of non-determinism. This is essentially

60

4.3. Approach

Contextual Info

Network Trace

Contextualized TraceInstrumented Environment

Contextualized Trace

#1
Run

#n
Run

... Network Behavior
Summary

Contextualized Trace

Final
Run

App

Sources of Leak

Differential
Analysis Risk Analysis

Phase 1: Network Behavior
Summary Extraction

Phase 2: Differential Analysis

......

App

Sources of Leak

App

Sources of Leak

Contextual Info

Network Trace

Contextual Info

Network Trace

Instrumented Environment

Instrumented Environment

Figure 4.2: High-level overview of Agrigento: during the network behavior summary extraction it
�rst generates a baseline of an app’s network behavior during n runs, taking into account

non-determinism in the contextual information; during the di�erential analysis it then modi�es
the sources of private information and identi�es privacy leaks based on di�erences in the network

behavior of the �nal run compared to the network behavior observed in the previous runs.

the opposite goal of previous work: rather than �nding leaks, we use string matching
techniques to �ag potential leaks as “safe.” This approach has the advantage of being
conservative. In fact, we �ag any source of non-determinism that we cannot explain.
While in previous work a failure of the string matching would lead to a missed leak
(i.e., a false negative), our approach would produce, in the worst case, a false positive.
Network Behavior Summary. When Agrigento builds the contextualized network
traces, it essentially removes all common sources of non-determinism from the net-
work tra�c. However, it cannot fully eliminate non-determinism in the execution
path of the app. Even though Agrigento runs the app in an instrumented environ-
ment and replays the same sequence of events for each run, di�erent loading times
of the UI and other factors can result in di�erent execution paths. To mitigate this
issue, we run each app multiple times and merge the contextualized traces collected
in the individual runs to a network behavior summary. Intuitively, the network be-
havior summary includes all the slightly di�erent execution paths, generating a more
complete picture of the app’s network behavior. In other words, the network behav-
ior summary represents “everything we have seen” during the executions of the given
app and aims at providing a trusted baseline behavior of the app.

A distinctive aspect of Agrigento is how it determines the number of times each
app should be executed. Intuitively, the number of runs a�ects the performance of our
tool in terms of false positives. However, we observed that this parameter strongly
depends on the complexity of the app. Therefore, our approach is iterative and de-
cides after each run if another one is required. After each run Agrigento performs
the di�erential analysis using the collected contextualized traces. By analyzing the
discrepancies in the network behavior without having altered any source of private
information, we can understand when Agrigento has su�ciently explored the app’s
behavior, i.e., when the network behavior summary reaches convergence.

61

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

ht
tp

s:
//a

ds
.c

om
/s

ho
w

?d
at

a=
39

51
82

0f
b1

ca
d2

e7
7a

99
6e

18
fd

19
73

ff
ht

tp
s:

//a
ds

.c
om

/re
gi

st
er

?i
d=

47
16

ac
99

-7
67

e-
42

f4
-8

6f
a-

09
2d

48
94

31
a3

&
sp

ec
ia

l=
Tr

ue

ht
tp

s:
//a

ds
.c

om
/s

ho
w

?d
at

a=
dd

e1
08

ec
00

cf
c0

8d
3b

22
a3

96
59

e3
f6

cf
ht

tp
s:

//a
ds

.c
om

/re
gi

st
er

?i
d=

e9
04

03
25

-2
b7

e-
a6

74
-d

e2
1-

ce
1b

98
3f

a8
a5

ht
tp

s:
//a

ds
.c

om
/s

ho
w

?d
at

a=
7a

ca
67

bf
c7

5d
78

16
a1

d9
07

fb
83

4c
8f

69
ht

tp
s:

//a
ds

.c
om

/re
gi

st
er

?i
d=

73
2d

06
4f

-a
46

5-
04

14
-0

7f
9-

ff7
d4

c2
75

44
c

ht
tp

s:
//a

ut
h.

do
m

ai
n.

co
m

/u
se

r/s
ig

n

U
U

ID
s:

 [7
32

d0
64

f-a
46

5-
04

14
-0

7f
9-

ff7
d4

c2
75

44
c]

Ti
m

es
ta

m
ps

: [
14

68
97

45
6,

 1
46

89
75

62
]

D
ec

ry
pt

io
n

m
ap

: {
"7

ac
a6

7b
fc

75
d7

81
6a

1d
90

7f
b8

34
c8

f6
9"

=>
"1

46
89

74
56

_c
73

4f
4e

c"
}

U
U

ID
s:

 [4
71

6a
c9

9-
76

7e
-4

2f
4-

86
fa

-0
92

d4
89

43
1a

3]
Ti

m
es

ta
m

ps
: [

14
68

97
98

5]
D

ec
ry

pt
io

n
m

ap
: {

"3
95

18
20

fb
1c

ad
2e

77
a9

96
e1

8f
d1

97
3f

f"=
>"

14
68

97
98

5_
c7

34
f4

ec
"}

U
U

ID
s:

 [e
90

40
32

5-
2b

7e
-a

67
4-

de
21

-c
e1

b9
83

fa
8a

5]
Ti

m
es

ta
m

ps
: [

14
68

98
91

0,
 1

46
91

23
44

]
D

ec
ry

pt
io

n
m

ap
: {

"d
de

10
8e

c0
0c

fc
08

d3
b2

2a
39

65
9e

3f
6c

f"=
>"

14
68

98
91

0_
03

ff6
1e

4"
}

ht
tp

s:
//a

ds
.c

om
/s

ho
w

?d
at

a=
<T

IM
E

S
TA

M
P

>_
c7

34
f4

ec
ht

tp
s:

//a
ds

.c
om

/re
gi

st
er

?i
d=

<R
A

N
D

O
M

_U
U

ID
>

ht
tp

s:
//a

ut
h.

do
m

ai
n.

co
m

/u
se

r/s
ig

n

ht
tp

s:
//a

ds
.c

om
/s

ho
w

?d
at

a=
<T

IM
E

S
TA

M
P

>_
c7

34
f4

ec
ht

tp
s:

//a
ds

.c
om

/re
gi

st
er

?i
d=

<R
A

N
D

O
M

_U
U

ID
>

ht
tp

s:
//a

ds
.c

om
/re

gi
st

er
?s

pe
ci

al
=T

ru
e

ht
tp

s:
//a

ds
.c

om
/s

ho
w

?d
at

a=
<T

IM
E

S
TA

M
P

>_
c7

34
f4

ec
ht

tp
s:

//a
ds

.c
om

/re
gi

st
er

?i
d=

<R
A

N
D

O
M

_U
U

ID
>

ht
tp

s:
//a

ut
h.

do
m

ai
n.

co
m

/u
se

r/s
ig

n
ht

tp
s:

//a
ds

.c
om

/re
gi

st
er

?s
pe

ci
al

=T
ru

e

ht
tp

s:
//a

ds
.c

om
/s

ho
w

?d
at

a=
<T

IM
E

S
TA

M
P

>_
03

ff6
1e

4
ht

tp
s:

//a
ds

.c
om

/re
gi

st
er

?i
d=

<R
A

N
D

O
M

_U
U

ID
>

03
ff6

1e
4

#1 Run #n Run Final Run

N
et

w
or

k
Tr

ac
e

N
et

w
or

k
Tr

ac
e

N
et

w
or

k
Tr

ac
e

C
on

te
xt

ua
l i

nf
o

C
on

te
xt

ua
l i

nf
o

C
on

te
xt

ua
l i

nf
o

C
on

te
xt

ua
liz

ed
 T

ra
ce

C
on

te
xt

ua
liz

ed
 T

ra
ce

C
on

te
xt

ua
liz

ed
 T

ra
ce

N
et

w
or

k
Be

ha
vi

or
 S

um
m

ar
y

D
iff

er
en

tia
l A

na
ly

si
s

<T
IM

E
S

TA
M

P
>_

c7
34

f4
ec

<T
IM

E
S

TA
M

P
>_

03
ff6

1e
4

Sc
or

e(
"c
73
4f
4e
c"

, "
03
ff6
1e
4"

) =
 2

1

Ri
sk

 A
na

ly
si

s

Ph
as

e
2

Ph
as

e
1

Fi
gu

re
4.
3:

Ex
am

pl
e
of

ho
w

A
gr

ig
en

to
pe

rf
or
m
s
it
s
an

al
ys
is
in

tw
o
ph

as
es
.(
1)

In
th
e
�r

st
ph

as
e
it
bu

ild
s
a
ne

tw
or
k
be

ha
vi
or

su
m
m
ar
y
an

d
re
pl
ac
es

co
m
m
on

so
ur

ce
s
of

no
n-
de

te
rm

in
is
m
.(
2)

In
th
e
se
co

nd
ph

as
e
pe

rf
or
m
s
di
�
er
en

ti
al

an
al
ys
is
by

ch
an

gi
ng

th
e
va

lu
e
of

an
in
pu

ts
ou

rc
e
of

pr
iv
at
e
in
fo
rm

at
io
n
to

id
en

ti
fy

di
�
er
en

ce
s
in

th
e
ne

tw
or
k
be

ha
vi
or
,w

hi
ch

it
th
en

sc
or
es

as
po

te
nt
ia
lp

ri
va

cy
le
ak

s.

62

4.3. Approach

In practice, we say that an app reaches convergence when we do not see any
discrepancies in the network behavior summary for K consecutive runs. In §4.5.3,
we show how this parameter sets a trade-o� between the ability of explaining non-
determinism and the overall time it takes Agrigento to analyze an app (i.e., the av-
erage number of runs). Also, because some apps might never reach convergence, we
set a maximum number of runs.

4.3.2 Di�erential Analysis

In a second phase, we run the app in the same environment as before, but modify the
value of private information sources, such as the IMEI and location, we want to track.
We can do this (a) once for all values to detect if an app is stealthily leaking informa-
tion in general, or (b) multiple times—once for every unique identi�er—to precisely
identify the exact type of information the app is leaking. In the example in Figure 4.3,
Agrigento changed the value of a source of private information from c734f4ec to
03ff61e4.
Di�erential Analysis. As in the previous phase, we collect a network trace and
contextual information to build a contextualized trace. Then, we compare this con-
textualized trace against the network behavior summary, which we extracted in the
previous phase. To extract the di�erences, we leverage the Needleman-Wunsch algo-
rithm [65] to perform a pairwise string sequence alignment. The algorithm is based on
dynamic programming and can achieve an optimal global matching. It is well-suited
for our scenario: in fact, it has been successfully applied to automatic network pro-
tocol reverse engineering e�orts [12, 95, 107], which conceptually have a similar goal
than our network behavior summary, in that they extract a protocol from observing
the network behavior during multiple executions.

At this point of our analysis, we eliminate the �nal source of non-determinism: val-
ues that come from the network. For each di�erence, Agrigento checks if its value
has been received in a response to a previous network request (e.g., the value is a
server-assigned identi�er). We assume that leaked information is not part of the pay-
load of previous responses. This is reasonable since, in our threat model, the attacker
does not know the value of the leaked source of private information in advance.

After this �ltering step, Agrigento raises an alert for each remaining di�erence
between the contextualized trace in the �nal run and the network behavior summary.
This is a conservative approach, which means that, if there is some source of non-
determinism Agrigento does not properly handle (e.g., apps that create UUIDs them-
selves or perform custom encryption without leveraging the Android framework), it
will �ag the app: In the worst case, this will produce a false positive.
Risk Analysis. In the last phase of our approach, Agrigento quanti�es the amount
of information in each identi�ed di�erence to evaluate the risk that an alert is caused
by an actual information leak. Our key intuition is that not all identi�ed di�erences
bear the same risk. Thus, we assign a score to each alert based on how much the
information di�ers from the network behavior summary. Speci�cally, we leverage
two distance metrics, the Hamming distance and the Levenshtein distance, to compare
each alert value to the corresponding value in the network behavior summary. Finally,
for each app we compute a cumulative score S as the sum of the scores of all the alerts
that Agrigento produced for the app. This score provides a measure of the amount

63

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

of information (i.e., the number of bits) an app can potentially leak, and it can thus be
used as an indirect measure of the overall risk of a privacy leak in a given app.

4.4 System Details

We implemented Agrigento in two main components: an on-device component,
which instruments the environment and collects contextual information, and the core
o�-device component, which intercepts the network tra�c, extracts the network be-
havior summary, and performs the di�erential analysis.

4.4.1 Apps Environment Instrumentation

We implemented a module, based on Xposed [6], which hooks method calls and records
and modi�es their return values. As a performance optimization, Agrigento applies
the contextualization steps only when needed (i.e., only when it needs to address val-
ues from a non-deterministic source).
Random values. To record Android random identi�ers (UUIDs) the module inter-
cepts the return of the Android API randomUUID() and reads the return value. However,
recording the randomly generated values is not enough: apps frequently process these
numbers (e.g., multiply them with a constant), and thus they usually do not appear
directly in the network tra�c. To handle this scenario, we set a �xed seed for random
number generation functions. By doing so, we can observe the same values in the out-
put network tra�c for each run, even without knowing how they are transformed by
an app. However, always returning the same number is also not an option since this
might break app functionality. Thus, we rely on a precomputed list of randomly gen-
erated numbers. For each run, the module modi�es the return value of such functions
using the numbers from this precomputed list. In case the invoked function imposes
constraints on the generated number (e.g., integers in the interval between 2 and 10),
we adapt the precomputed numbers in a deterministic way (e.g., by adding a constant),
to satisfy the speci�c requirements of a function call.
Timing values. Also in the case of timing information, only recording the values
is not enough since timestamps are often used to produce more complex values (e.g.,
generation of signatures). To deal with timestamp-related values, the module hooks
all the methods providing time-related information, e.g., System.currentTimeMillis(),
stores the return values in a �le during the �rst run, and modi�es the return values
reading from the �le in the next runs. It reads the stored timestamps in the same order
as they were written and, in case one of the next runs performs more calls to a speci�c
method than the �rst run (this could be due to a di�erent execution path), it leaves
the original return values unmodi�ed for the exceeding calls.
Systemvalues. We set to constants the return values of Android APIs that apps use to
perform performance measurements and �ngerprint the device for example by read-
ing information about the available storage space from StatFs.getAvailableBlocks(), or
by querying ActivityManager.getMemoryInfo() for information about available memory.
Encrypted values. In order to decrypt encrypted content, we hook the Android
Crypto APIs (i.e., Cipher, MessageDigest, Mac) and store the arguments and return value
of each method. Our module parses the API traces to build a decryption map that

64

4.4. System Details

0x4432cd80 = Cipher.getInstance(0x48a67fe0)
*0x48a67fe0: "AES/CBC/PKCS5Padding"

0x4432cd80.init(1, 0x48a9fac0, 0x48d448ec)

0x48ae98f0 = 0x4432cd80.update(0x485affb74)
*0x485affb74: "Plaintext"
*0x48ae98f0: \xea\x37\xfb\xfa\xc0\xcc\x47\x46\xce\x01

 \x25\x0a\x82\x5b\x6b\x38

0x48aeb6f0 = 0x4432cd80.doFinal(0x485af740)
*0x485af740: "Content"
*0x48aeb6f0: \xf5\xff\x0a\xab\xf0\x5b\xd9\xd5\x6a\x0f

 \x6c\xda\x30\xaf\xf1\x3a

\xea\x37\xfb\xfa\xc0\xcc\x47\x46
\xce\x01\x25\x0a\x82\x5b\x6b\x38
\xf5\xff\x0a\xab\xf0\x5b\xd9\xd5
\x6a\x0f\x6c\xda\x30\xaf\xf1\x3a

 "Plaintext Content"

Decryption map

Figure 4.4: Example of how Agrigento leverages Crypto API traces to build an entry of the
decryption map that maps ciphertext to its corresponding plaintext (*address represents the

content stored at that address).

allows it to map ciphertext to the corresponding original plaintext. Since the �nal ci-
phertext can be the result of many Crypto API calls, Agrigento combines the values
tracking the temporal data dependency. Figure 4.4 shows an example of how we use
Crypto API traces to create a map between encrypted and decrypted content. Specif-
ically, the example shows how Agrigento creates an entry in the decryption map by
tracing the API calls to a Cipher object and by concatenating the arguments of such
calls (update(), doFinal()).
Patching JavaScript code. We observed many applications and ad libraries down-
loading and executing JavaScript (JS) code. Often, this code uses random number
generation, time-related, and performance-related functions. We implemented a mod-
ule in the proxy that inspects the JS code and patches it to remove non-determinism.
Speci�cally, this module injects a custom random number generation function that
uses a �xed seed, and replaces calls to Math.random() and getRandomValues() with our
custom generator. Also, the JS injector replaces calls to time-related functions (e.g.,
Date.now()) with calls to a custom, injected timestamp generator, and sets constant
values in global performance structures such as timing.domLoading.

4.4.2 Network Setup

Our implementation of Agrigento captures the HTTP tra�c and inspects GET and
POST requests using a proxy based on the mitmproxy library [4]. In order to inter-
cept HTTPS tra�c, we installed a CA certi�cate on the instrumented device. Fur-
thermore, to be able to capture tra�c also in the case apps use certi�cate pinning,
we installed JustTrustMe [3] on the client device, which is an Xposed module that
disables certi�cate checking by patching the Android APIs used to perform the check
(e.g., getTrustManagers()). However, if an app performs the certi�cate check using cus-
tom functionality or native code, we cannot intercept the tra�c.

We limit our study to HTTP(S) tra�c (further referred to both as HTTP), since

65

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

mydomain.com

root

ads.com auth.domain.com

/showad /register/client... ...

user ts

<TIMESTAMP>John Jack

Connection

keep-alive
Figure 4.5: Example of the tree-based data structure used to model a network behavior summary.

related work found this to be the protocol of choice for the majority (77.77%) of An-
droid apps [27]. However, this is only a limitation of our prototype implementation
of Agrigento, and not a fundamental limitation of our approach.

Finally, to �lter only the network tra�c generated by the analyzed app, we use
iptables to mark packets generated by the UID of the app, and route only those
packets to our proxy.

4.4.3 Network Behavior Summary

We model the network behavior summary using a tree-based data structure, which
contains the HTTP GET and POST �ows from all the contextualized traces. The tree
has four layers. The �rst layer contains all the domain names of the HTTP �ows. The
second layer contains the paths of the HTTP �ows recorded for each domain. The
third and fourth layers contain key-value pairs from the HTTP queries and HTTP
headers. Also, we parse known data structures (e.g., JSON) according to the HTTP
Content-Type (e.g., application/json). Figure 4.5 shows an example of a tree mod-
eling a network behavior summary.

This structure is useful to group the �elds of the HTTP �ows that we track accord-
ing to their “type” and position in the tree. In fact, when performing the di�erential
analysis, we want to compare �elds in the same position in the tree. For instance, if
an HTTP request contains an HTTP value that is not part of the tree, we compare it
with the other values from requests with the same domain, path, and key.

Agrigento looks for privacy leaks at all levels of the tree, i.e., in all parts of the
HTTP request: the domain, path, key, and values, as well as the headers and the pay-
load. In the current implementation Agrigento includes parsers for application/
x-www-form-urlencoded, application/json, and any content that matches a HTTP
query format (i.e., variable=value). However, Agrigento can be easily extended with
parsers for further content types.

4.4.4 Modifying Sources of Private Information

In our implementation we track the following sources of private information: Android
ID, contacts, ICCID, IMEI, IMSI, location, MAC address, and phone number. For IC-
CID, IMEI, IMSI, MAC address and phone number we leverage the Xposed module

66

4.4. System Details

Algorithm 2 Di�erential Analysis.
1: procedure differentialAnalysis(context_trace, summary)
2: diffs←
3: for http_flow ∈ context_trace do
4: if http_flow /∈ summary then
5: field← getMissingField(http_flow, summary)
6: fields← getSamePositionField(field, summary)
7: diffs.add(compare(field, fields))
8:
9: return diffs

10:
11: procedure compare(field, fields)
12: diffs←
13: most_similar ← mostSimilar(field, fields)
14: if isKnownDataStructure(field,most_similar) then
15: subfields← parseDataStructure(field)
16: similar_subfields← parseDataStructure(most_similar)
17: for i ∈ subfields do
18: diffs.add(compare(subfieldsi, similar_subfieldsi))
19:
20: return diffs
21: if isKnownEncoding(field,most_similar) then
22: field← decode(field)
23: most_similar ← decode(most_similar)

24: alignment← align(field,most_similar)
25: regex← getRegex(alignment)
26: diffs← getRegexMatches(field, regex)
27: diffs← removeNetworkValues(diffs)
28: diffs← whitelistBenignLibaries(diffs)
29:
30: return diffs

to alter the return values of the Android APIs that allow to retrieve such data (e.g.,
TelephonyManager.getDeviceId()). For the Android ID we directly modify the value in
the database in which it is stored, while to alter the contact list we generate intents
through adb. We also use mock locations, which allow to set a fake position of the
device for debug purposes.

4.4.5 Di�erential Analysis

In the second phase of our approach, Agrigento modi�es the input sources of private
information as described in the previous section, reruns the app in the instrumented
environment, and compares the new contextualized trace with the network behavior
summary to identify changes in the network tra�c caused by the input manipulation.

We implemented the di�erential analysis following the steps de�ned in Algorithm 2.
For each HTTP �ow in the contextualized trace collected from the �nal run, Agri-
gento navigates the tree and checks if each �eld of the given �ow is part of the tree.
If it does not �nd an exact match, Agrigento compares the new �eld with the �elds in
the same position in the tree (e.g., requests to the same domain, path, and key). Specif-
ically, Agrigento performs the comparison between the new �eld and the most sim-

67

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

ilar �eld among those in the same position in the tree. During the comparison phase,
Agrigento recognizes patterns of known data structures such as JSON. If any are
found, Agrigento parses them and performs the comparison on each sub�eld. This
step is useful to improve the alignment quality and it also improves the performance
since aligning shorter sub�elds is faster than aligning long values. Furthermore, be-
fore the comparison, Agrigento decodes known encodings (i.e., Base64, URLencode).
Then, Agrigento leverages the Needleman-Wunsch algorithm to obtain an alignment
of the �elds under comparison. The alignment identi�es regions of similarity between
the two �elds and inserts gaps so that identical characters are placed in the same po-
sitions. From the alignment, Agrigento generates a regular expression. Essentially,
it merges consecutive gaps, and replaces them with a wildcard (i.e., *). Finally, it ob-
tains a set of di�erences by extracting the substrings that match the wildcards of the
regular expression from a �eld. Agrigento then discards any di�erences caused by
values that have been received by previous network requests (e.g., server-assigned
identi�er). Finally, Agrigento also whitelists benign di�erences caused by known
Google libraries (e.g., googleads), which can be particularly complex to analyze and
that contain non-determinism Agrigento cannot e�ciently eliminate.
Example. For instance, in this simpli�ed case, the network behavior summary tree
contains the following HTTP �ows:
domain.com/path?key=111111111_4716ac99767e
domain.com/path?key=111111111_6fa092d4891a
other.com/new?id=28361816686630788

The HTTP �ow in the contextualized trace collected from the �nal run is:
domain.com/path?key=999999999_4716ac99767e

Agrigento navigates the tree from domain.com to key, and then determines that
999999999_4716ac99767e is not part of the tree. Hence, it selects the most similar
�eld in the tree, and performs the comparison with its value. In this case, it aligns
999999999_4716ac99767e with 111111111_4716ac99767e. Starting from the align-
ments it produces the regular expression *_4716ac99767e and determines 999999999
as the di�erence in the network behavior of the �nal run compared to the network
behavior summary of previous runs.

4.4.6 Risk Analysis

As mentioned in §4.3.2 we combine the Hamming and the Levenshtein distance to
compute a score for each of the di�erences Agrigento identi�es during di�erential
analysis. In particular, we are interested in quantifying the number of bits that di�er
in the network tra�c of the �nal run from what we have observed in the network
behavior summary.

For each �eld that the di�erential analysis �agged as being di�erent from the previ-
ously observed network tra�c, we compute a score based on the distance of its value
to the most similar value in the same position of the network behavior summary. This
is equivalent to selecting the minimum distance between the value and all other pre-
viously observed values for a speci�c �eld.

Given an app A, D (= the di�erences detected by analyzing A), and F (= all the
�elds in the tree of A’s network behavior), we then compute an overall score SA that
quanti�es how many bits the app is leaking:

68

4.5. Experimental Results

distance(x, y) =

{
Hamming(x, y) if len(x)=len(y)
Levenshtein(x, y) ∗ 8 otherwise

SA =
∑
∀d∈D

min
∀f∈F

distance(d, f)

We combine the Hamming and the Levenshtein distance as follows: if the values
under comparison are of equal length we use the Hamming distance, otherwise we
use the Levenshtein distance. While we apply the Hamming distance at the bit level,
the Levenshtein distance calculates the minimum number of single-character edits. In
the latter case, to obtain the number of di�erent bits, we simply map one character
to bits by multiplying it with 8. We note that this distance metric does not provide
a precise measurement, but we believe it provides a useful estimation of the amount
of information contained in each di�erence. Moreover, we note that BayesDroid [91]
also applied the Hamming and Levenshtein distances, although only on strings of the
same length, to provide a rough indication on how much information is contained
in a given leak. Both metrics share the very same intuition and, therefore, provide a
similar numeric result.

4.5 Experimental Results

For our evaluation, we �rst performed an experiment to characterize non-determinism
in network tra�c and demonstrate the importance of leveraging contextual informa-
tion when applying di�erential analysis to the network tra�c of mobile apps. Second,
we compared the results of our technique with existing tools showing thatAgrigento
outperformed all of them, and identi�ed leaks in several apps that no other tool was
able to detect. Then, we describe the results of our analysis on current popular apps
and present some interesting case studies describing the stealthy mechanisms apps
use to leak private information. Finally, we assess the performance of Agrigento in
terms of runtime.

4.5.1 Experiment Setup

We performed our experiments on six Nexus 5 phones, running Android 4.4.4, while
we deployed Agrigento on a 24 GB RAM, 8-core machine, running Ubuntu 16.04.
The devices and the machine running Agrigento were connected to the same subnet,
allowing Agrigento to capture the generated network tra�c.

We chose to perform our experiments on real devices since emulators can be easily
�ngerprinted by apps and ad libraries [68, 92]. Especially ad libraries are likely to
perform emulator detection as ad networks, such as Google’s AdMob [42], encourage
the use of test ads for automated testing to avoid in�ating ad impressions. By using
real devices instead of emulators our evaluation is thus more realistic. Furthermore,
we set up a Google account on each phone to allow apps to access the Google Play
Store and other Google services.

For each execution, we run an app for 10 minutes using Monkey [1] for UI stimula-
tion. We provide Monkey with a �xed seed so that its interactions are the same across
runs. Although the �xed seed is not enough to remove all randomness from the UI

69

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

interactions, it helps to eliminate most of it. At the end of each run, we uninstall the
app and delete all of its data.

4.5.2 Datasets

We crawled the 100 most popular free apps across all the categories from the Google
Play Store in June 2016. Additionally, we randomly selected and downloaded 100 less
popular apps. We distinguish between those two datasets based on the intuition that
these two sets of apps might di�er signi�cantly in their characteristics and overall
complexity.

In order to compare our approach with existing techniques, we also obtained the
dataset from the authors of ReCon [74], which they used to compare their approach
to state-of-the-art static and dynamic data �ow techniques. This dataset contains the
100 most popular free apps from the Google Play Store in August 2015 and the 1,000
most popular apps from the alternative Android market AppsApk.com. Ultimately,
we use 750 of those apps for analysis, since those apps were the ones that produced
any network tra�c in ReCon’s experiments. We further obtained the dataset of Bayes-
Droid [91], which contains 54 of the most popular apps from the Google Play Store in
2013.

4.5.3 Characterizing Non-Determinism in Network Tra�c

One key aspect of our work is being able to characterize and explain non-determinism
in network tra�c. In fact, we want to distinguish what changes “no matter what” and
what changes “exactly because we modi�ed the input.” First, we show that trivially ap-
plying approaches based on di�erential analysis is ine�ective when applied to modern
Android apps. Second, our technique allows us to pinpoint which apps are problem-
atic, i.e., for which apps we cannot determine why the network output changes. In
this case, we cannot reliably correlate the di�erences in output with the di�erences
in input and, therefore, we �ag them as potentially leaking private information. We
note that we can adopt this conservative aggressive policy only because we rarely en-
counter inexplicable di�erences in the network tra�c of apps that do not leak private
information. In other words, changes in network tra�c that cannot be explained by
our system are strong indicators that private information is leaked.

To demonstrate how poorly a naïve di�erential analysis approach without consid-
ering any network-based non-determinism would perform, we analyzed the 100 popu-
lar Google Play apps from the ReCon dataset twice: the �rst time, we trivially applied
the di�erential analysis without leveraging any contextual information; the second
time, instead, we applied our full approach, executing the apps in our instrumented
environment and exploiting the collected contextual information. In both cases, we
measured the number of runs needed to converge, setting 20 as the maximum number
of runs.

Figure 4.6 shows the cumulative distribution functions of the number of runs re-
quired to reach convergence in the two scenarios. While in the �rst case almost all the
apps did not reach convergence (within a maximum number of 20 runs), our approach
correctly handled most of the cases. This demonstrates two things: (1) network tra�c
is very often non-deterministic, (2) in most cases, the contextual information recorded
during the app’s analysis is enough to determine the real source of non-determinism.

70

4.5. Experimental Results

4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

#runs

CD
F

Figure 4.6: Cumulative distribution function (CDF) of the number of runs required for convergence
(for K = 3) applying Agrigento’s full approach (solid line), and the trivial di�erential analysis
approach (dashed line) that does not consider any non-determinism in the network behavior.

0 2 4 6 8 10 12 14 16 18 20 22
0.2

0.4

0.6

0.8

#runs

%a
pp

s

Figure 4.7: Percentage of apps with non-deterministic network tra�c in an increasing number of runs
when applying Agrigento’s full approach (solid line), and the trivial di�erential analysis

approach without leveraging contextual information (dashed line).

In order to further con�rm this �nding, we evaluated how the number of runs
per app a�ects the number of apps for which Agrigento cannot completely explain
some source of non-determinism. To do so, we performed a �nal execution without
altering any source of private information, and measured the number of apps that
contained non-determinism in the network tra�c (i.e., the number of apps for which
Agrigento raised an alert). Figure 4.7 shows that, in contrast to our full approach,
when applying the di�erential analysis trivially, increasing the number of runs is not
enough to reduce non-determinism (82.1% of the apps generated non-deterministic
network tra�c).

Finally, we evaluated how the choice of K (i.e., the number of consecutive runs
without discrepancies considered to reach convergence) a�ectsAgrigento’s ability to
explain non-determinism. We performed the evaluation on two datasets: the 100 most
popular apps from the Google Play Store and 100 randomly selected less popular apps
from the Google Play Store. We run the analysis without altering any source of private
information. By doing this, any alert is caused by the fact that there is some non-
determinism in the network tra�c that Agrigento could not explain. Table 4.1 shows
that K = 3 minimizes the number of apps with unexplained non-determinism in their

71

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

network tra�c, at the cost of a small increase in the average number of runs required
per app. This evaluation also shows that the popular apps indeed seem to be more
complex than the randomly selected ones, for which Agrigento required a lower
number of runs on average and could fully explain all sources of non-determinism in
more cases overall.

4.5.4 Comparison with Existing Tools

To evaluate our approach and establish the presence of false positives and false neg-
atives, we compared Agrigento to existing state-of-the-art analysis tools. Generally,
comparing the results of this kind of systems is far from trivial, the main problem be-
ing the absence of ground truth. Also, especially in the case of obfuscated leaks, the
detected information leaks are often hard to verify by looking at the network tra�c
alone. Therefore, we manually reverse engineered the apps to the best of our abil-
ity to con�rm our results. Finally, dynamic analysis results are in�uenced by limited
coverage and di�erent UI exploration techniques, which impedes the comparison.

The only currently available benchmark for privacy leak detection is the Droid-
Bench1 test suite, which is commonly used to evaluate approaches based on both static
and dynamic analysis. We found, however, that it contains very few test cases for dy-
namic analysis, and those focus mainly on emulator detection (not a�ecting us since
we run our evaluation on real devices). It also does not address complex obfuscation
scenarios such as the ones we observed in this work, and, thus, none of the test cases
are appropriate for the evaluation of Agrigento.

We thus performed the comparison against existing tools using two datasets on
which related work was evaluated: 750 apps from ReCon, and 54 apps from Bayes-
Droid.
ReCon dataset. A similar comparison to evaluate state-of-the-art analysis tools from
di�erent categories (static taint analysis, dynamic taint analysis, and a combination
of both) has been performed recently to evaluate ReCon [74], which itself is based on
network �ow analysis. Table 4.2 shows the comparison between our tool and AppAu-
dit [101], Andrubis [61] (which internally uses TaintDroid [29]), FlowDroid [11], and
ReCon. We base our comparison on the number of apps �agged by each tool for leak-
ing information. For the comparison we considered the following sources of private
information: Android ID, IMEI, MAC address, IMSI, ICCID, location, phone number,
and contacts.
1 https://github.com/secure-software-engineering/DroidBench

Table 4.1: Choice ofK (= number of consecutive runs to reach convergence) and its e�ect on the
average number of runs per app, and number of apps with non-determinism in the network tra�c

that Agrigento cannot explain.

K
Popular Non-Popular All

#apps avg #runs #apps avg #runs #apps avg #runs

1 39 6.02 16 3.10 55 4.56
2 30 8.28 14 4.44 44 6.36
3 28 9.85 11 5.67 39 7.76
4 28 12.42 11 6.78 39 9.60
5 28 13.82 11 8.01 39 10.92

72

https://github.com/secure-software- engineering/DroidBench

4.5. Experimental Results

Compared to ReCon, Agrigento detected 165 apps that ReCon did not identify,
while it did not �ag 42 apps that ReCon identi�ed. We manually checked the results
to verify the correctness of our approach. Among the 42 Agrigento did not detect, 23
did not generate any network tra�c during our analysis. This may be due to di�erent
reasons, for instance di�erent UI exploration (ReCon manually explored part of the
dataset), or because the version of the app under analysis does not properly work in
our test environment. We manually inspected the network tra�c generated by the
remaining 19 apps. In particular, we manually veri�ed whether each network trace
contained any of the values of the sources of private information that we considered,
and we also checked for known transformations, such as MD5 hashes and Base64 en-
coding. In all cases, we did not identify any leak (i.e., we did not identify any false
negatives). We acknowledge that this manual evaluation does not exclude the pres-
ence of false negatives. However, we consider this an encouraging result nonetheless.

To perform a more thorough evaluation of false negatives, we also performed an
additional experiment. Since one main challenge when comparing approaches based
on dynamic analysis is related to GUI exploration di�erences, we asked the authors
of ReCon to run their tool on the network tra�c dumps we collected during our anal-
ysis. In this way, it is possible to compare both tools, ReCon and Agrigento, on the
same dynamic trace. On this dataset, ReCon �agged 229 apps for leaking information.
Agrigento correctly detected all the apps identi�ed by ReCon, and, in addition, it
detected 49 apps that ReCon did not �ag. This evaluation shows that, also for this
experiment, Agrigento did not show any false negatives. Moreover, we also looked
for false positives, and we manually veri�ed the 49 apps detected by Agrigento and
not by ReCon. Our manual analysis revealed that 32 of the 49 apps did indeed leak
at least one source of private information, which should then be considered as true
positives (and false negatives for ReCon). For further 5 apps we could not con�rm the
presence of a leak and thus classify them as false positives produced by our system.
We cannot classify the remaining 12 cases as either true or false positives because of
the complexity of reversing these apps.
BayesDroid dataset. We obtained the dataset used by BayesDroid and analyzed the
apps with Agrigento. For the comparison we considered the common sources of in-
formation supported by bothAgrigento and BayesDroid (i.e., IMEI, IMSI, Android ID,
location, contacts). BayesDroid �agged 15 of the 54 apps. However, since this dataset
contains older app versions (from 2013) 10 apps did not work properly or did not gen-
erate any network tra�c during our analysis. Nevertheless, Agrigento �agged 21
apps, including 10 of the 15 apps identi�ed by BayesDroid. As we did for the ReCon
dataset, we manually looked at the network traces of the remaining 5 apps and we did
not see any leak (3 of them did not produce any network tra�c, furthermore Bayes-

Table 4.2: Comparison of Agrigento with existing tools on the ReCon dataset (750 apps)

Tool (Approach) #Apps detected

FlowDroid (Static taint analysis) 44
Andrubis/TaintDroid (Dynamic taint analysis) 72
AppAudit (Static & dynamic taint �ow) 46
ReCon (Network �ow analysis) 155
Agrigento 278

73

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

Table 4.3: Number of apps detected by Agrigento in the 100 most popular apps (July 2016) from the
Google Play Store. The column “Any” refers to the number of apps that leak at least one of the

private information sources.

Results Any Android ID IMEI MAC Addr IMSI ICCID Location Phone Num Contacts

TPs
Plaintext 31 30 13 5 1 0 1 0 0
Encrypted 22 18 9 3 5 0 0 0 0
Obfuscated 11 8 5 6 0 0 1 0 0
Total 42 38 22 11 6 0 1 0 0

FPs 4 5 9 11 13 13 11 16 13

Droid used manual exploration of all apps). Interestingly, Agrigento detected 11 apps
that BayesDroid did not. We found that 6 of these apps used obfuscations that Bayes-
Droid does not detect. For instance, one app included the InMobi SDK that performs a
series of encodings and encryptions on the Android ID before leaking it. We describe
this case in detail in §4.5.6. Moreover, the other 5 apps used Android APIs to hash or
encrypt data structures (e.g., in JSON format) containing private information sources,
again showing that our system detects cases that previous work cannot.

4.5.5 Privacy Leaks in Popular Apps

To evaluate Agrigento on a more recent dataset, we analyzed the current (July 2016)
100 most popular apps from the Google Play Store in more detail. Agrigento iden-
ti�ed privacy leaks in 46 of the 100 apps. We manually veri�ed the results of our
analysis to measure false positives. We found that 42 of these apps are true positives,
that is, they leak private information, while four apps were likely false positives. Note
that, in some cases, to distinguish true positives from false positives we had to man-
ually reverse the app. During our manual analysis, we did not encounter any false
negative. Once again, we acknowledge that, due to the absence of a ground truth, it is
not possible to fully exclude the presence of false negatives. In particular, as further
discussed in §4.6, Agrigento is a�ected by a number of limitations, which a malicious
app could take advantage of.

We then used our risk analysis to rank the risk associated with these false positives.
Interestingly, we found that while two of the four apps that caused false positives
have high scores (i.e., 8,527 and 8,677 bits), for the other two apps, one in particular,
Agrigento assigned low scores of 6 and 24 bits. We note that although for this work
we use our risk analysis only to rank the risk of a data leak in each detected app, we
believe it could be used to build, on top of it, a further �ltering layer that discards low
bandwidth leaks. We will explore this direction in future work.

We further classi�ed the type of leak in three groups: plaintext, encrypted, and
obfuscated. The �rst group contains apps that leak the information in plaintext. The
second group contains apps for which we observed the leaked information only after
our decryption phase (i.e., the leaked value has been encrypted or hashed using the
Android APIs). Finally, the third group contains apps that obfuscate information leaks
by other means (i.e., there is no observable evidence of the leaked value in the network
tra�c).

As a �rst experiment, we considered leaks only at the app level since we are inter-
ested in determining whether an app leaks information or not, independently from the

74

4.5. Experimental Results

number of times. In other words, we are interested to determine whether a given app
leaks any sensitive information. Thus, for each app analysis we performed just one �-
nal run for which we modi�ed all the sources simultaneously. As a result, Agrigento
produces a boolean output that indicates whether an app leaks private information or
not, without pointing out which particular source has been leaked. Table 4.3 shows
the results of this experiment. For this experiment, we consider an app as a true posi-
tive when it leaks any of the monitored sources and Agrigento �ags it, and as a false
positive when Agrigento �ags it although it does not leak any information.

While this experiment provides valuable insights, it provides only very coarse-
grained information. Thus, as a second experiment, we performed the same evaluation
but we looked at each di�erent source of information individually. In this case, we ran
the app and performed the di�erential analysis changing only one source at a time,
and we consider an app as a true positive only if it leaks information from the modi�ed
source and Agrigento correctly identi�es the leak. Our evaluation shows that, while
Agrigento produces higher false positives in identifying leaks for a speci�c source of
information, it has very few false positives in detecting privacy leaks in general. The
higher false positive rate is due to some sources of non-determinism that Agrigento
failed to properly handle and that consequently cause false positives when an app does
not leak data. For instance, consider the scenario in which an app leaks the Android
ID and also contains some non-determinism in its network tra�c that Agrigento
could not eliminate. In this case, when considering leaks at app-level granularity, we
consider the app as a true positive for the Android ID, since it does leak the Android ID.
Instead, for any other source of information (e.g., the phone number) we consider the
app as a false positive because of the non-determinism in the network tra�c. Finally,
we could not classify 9 apps, for which Agrigento identi�ed leaks of some of the
sources, because of the complexity of reversing these apps.

4.5.6 Case Studies

We manually reversed some apps that Agrigento automatically identi�ed as leaking
obfuscated or encrypted information. Here, we present some case studies showing
that current apps use sophisticated obfuscation and encryption techniques. Hence,
as con�rmed by the results of our evaluation, state-of-the-art solutions to identify
privacy leaks are not enough since they do not handle these scenarios and mostly
only consider standard encodings.

Interestingly, all the leaks we found in these case studies were performed by third-
party libraries, and thus may concern all the apps using those libraries.
Case study 1: InMobi. We found that InMobi, a popular ad library, leaks the An-
droid ID using several layers of obfuscation techniques. The Android ID is hashed
and XORed with a randomly generated key. The XORed content is then encoded us-
ing Base64 and then stored in a JSON-formatted data structure together with other
values. The JSON is then encrypted using RSA (with a public key embedded in the
app), encoded using Base64 and sent to a remote server (together with the XOR key).
Figure 4.8 shows an example of such a request leaking the obfuscated Android ID.
Agrigento automatically identi�ed 20 apps in our entire dataset leaking information
to InMobi domains, including one app in the 100 most popular apps from the Google

75

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

http://i.w.inmobi.com/showad.asm?u-id-map=iB7WTkCLJvNsaEQakKKXFhk8ZEIZlnL0jqbbYexc
BAXYHH4wSKyCDWVfp+q+FeLFTQV6jS2Xg97liEzDkw+XNTghe9ekNyMnjypmgiu7xBS1TcwZmFxYOjJkgP
OzkI9j2lryBaLlAJBSDkEqZeMVvcjcNkx+Ps6SaTRzBbYf8UY=&u-key-ver=2198564
__

https://h.online-metrix.net/fp/clear.png?ja=33303426773f3a3930643667663b3338383130
3d343526613f2d363830247a3f363026663d333539347a31323838266c603d687c7672253163253066
253066616f6e74656e762f6a732c746370626f7926636f652466723f6a747670253161273266253266
616d6d2e65616f656b69726b7573267270697867636e617730266a683d65616437613732316431353c
65613a31386e6760656330373636393634343363266d64643f6561633336303b64336a393531666330
36666361373261363a61616335636761266d66733f353b32306d383230613230643b6534643934383a
31663636623b32323767616126616d65613d3139333331333331333131333133312661743d6365656e
765f6f6f6a696c6d26617e3f7672777174666566676e6665722b6d6f606b6c652733632b392e322634
2d3b

Figure 4.8: Example of the requests performed by InMobi and ThreatMetrix libraries. InMobi leaks
the Android ID, as described in §4.5.6, in the value of u-id-map. ThreatMetrix leaks the Android ID,

location, and MAC address in the ja variable.

Play Store. Indeed, according to AppBrain2, InMobi is the fourth most popular ad
library (2.85% of apps, 8.37% of installs).
Case study 2: ThreatMetrix. The analytics library ThreatMetrix leaks multiple
sources of private information using obfuscation. It �rst puts the IMEI, location, and
MAC address in a HashMap. It then XORs this HashMap with a randomly generated
key, hex-encodes it, and then sends it to a remote server. Figure 4.8 shows an example
of such a request leaking the obfuscated Android ID, location, and MAC address. We
found 15 instances of this scenario in our entire dataset, one of which is part of the 100
most popular apps from the Google Play Store. According to AppBrain, ThreatMetrix
SDK is used by 0.69% of the apps in the Google Play Store, and is included by 4.94% of
the installs.
Further ad libraries. We found several other apps and ad libraries (MobileAppTrack-
ing, Tapjoy) leaking private information using the Android encryption and hashing
APIs. In the most common scenario, the values are combined in a single string that
is then hashed or encrypted. In this scenario, even though the app uses known en-
codings or cryptographic functions, previous tools are not able to detect the leak of
private information.

4.5.7 Performance Evaluation

We execute each app for 10 minutes during each run. The analysis time per app mainly
depends on the complexity of the app (i.e., the number of runs required to reach con-
vergence). Setting K = 3, Agrigento analyzed, on average, one app in 98 minutes.
Note that, while we executed each run sequentially, our approach can easily scale
using multiple devices or emulators running the same app in parallel.

4.6 Limitations and Future Work

While we addressed the major challenges for performing di�erential analysis despite
the overall non-determinism of the network tra�c of mobile apps, our overall ap-
proach and the implementation of Agrigento still have some limitations.
2 http://www.appbrain.com/stats/libraries/ad

76

http://www.appbrain.com/stats/libraries/ad

4.6. Limitations and Future Work

Even though Agrigento improves over the existing state-of-the-art, it still su�ers
from potential false negatives. For example, as any other approach relying on the
actual execution of an app, Agrigento su�ers from limited code coverage, i.e., an app
might not actually leak anything during the analysis, even if it would leak sensitive
data when used in a real-world scenario. This could happen for two main reasons: (a)
An app could detect that it is being analyzed and does not perform any data leaks. We
address this issue by performing our analysis on real devices; (b) The component of
the app that leaks the data is not executed during analysis, for example due to missing
user input. We currently use Monkey, which only generates pseudorandom user input
and cannot bypass, for example, login walls. Related works such as BayesDroid and
ReCon performed manual exploration of apps at least for part of the dataset, which
also included providing valid login credentials. Unfortunately, manual exploration is
only feasible for small-scale experiments and not on a dataset of over one thousand
apps such as ours, especially given the fact that Agrigento needs to generate the
same consistent user input over multiple executions. As part of our future work, we
are planning to explore whether it is possible to provide manual inputs for the �rst
run of an app, and then replaying the same input with tools such as RERAN [40] in
the subsequent runs. One option for collecting the initial manual inputs at scale is
Amazon Mechanical Turk.

Second, Agrigento still su�ers from some covert channels that an attacker could
use to leak information without being detected. For instance, a sophisticated attacker
could leak private information by encoding information in the number of times a
certain request is performed. However, this scenario is highly ine�cient from the
attacker point of view. Furthermore, we could address this issue with a more accu-
rate description of the “network behavior summary.” As a matter of fact, Agrigento
severely limits the bandwidth of the channel an attacker can use to stealthily trasmit
private data.

We need to run each app multiple times: by nature, an approach using di�erential
analysis requires at least two executions, one with the original inputs, and another
one with di�erent inputs to observe changes in the outputs. As we discussed in our
evaluation, the non-deterministic network behavior of modern apps further requires
us to perform the original execution more than once to build a more accurate network
behavior summary. Since we conservatively �ag any changes in the output as a pos-
sible leak, in practice the number of runs is a trade-o� between the overall analysis
time and the false positive rate. Furthermore, we perform the �nal run once for each
source of private information that we track. This requirement could be relaxed if our
goal was to �nd privacy leaks in general, and not speci�c types of information. In our
evaluation we performed all runs of a speci�c app consecutively on the same device.
We could parallelize this process on di�erent devices, however, with less control over
device-speci�c artifacts that could potentially in�uence our analysis.

On the implementation side we su�er from two main limitations: First, we cur-
rently do not instrument calls to /dev/random, which could be used by native code
directly as a source of randomness. We leave this issue for future work. Second, we
are limited by the protocols we track: we only check HTTP GET and POST requests
for leaks (and man-in-the-middle HTTPS even with certi�cate pinning in most cases).
However, we share this limitation with other tools, such as ReCon, and leave an ex-

77

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

tension of Agrigento to other protocols for future work.
By design, Agrigento can only determine that a speci�c piece of private infor-

mation was leaked, but not automatically determine how it was obfuscated. We can,
however, perform the naïve approach employed by related tool of simple grepping for
widely-used encodings and hashing algorithms of the value, to �lter out those cases
and focus manual reverse engineering e�orts on the more complex and interesting
ones.

Finally, we can only speculate why app developers are adopting the stealth tech-
niques that we have uncovered in our analysis. This development could be related to
the increasing awareness and opposition of users to the collection of their private data,
as well as the investigative e�orts of regulators such as the FTC. Currently, InMobi is
very open about the data it collects in its privacy policy.3 For future work we could in-
vestigate any malicious intent or deceptive practice behind sophisticated obfuscation
techniques, based on automatically verifying whether those leaks are in violation of
an app’s privacy policy or not. Related work in this direction by Slavin [81] has so far
only compared privacy policies against information �ows identi�ed with FlowDroid,
but has not considered cases in which apps are hiding their leaks with the techniques
Agrigento uncovered.

4.7 Related Work

Static taint analysis of Android apps is an active research topic, as several aspects
of Android apps proved to be very challenging—in particular their component-based
architecture and the multitude of entry points due to their user-centric nature and
complex lifecycle. AndroidLeaks [39] was one of the �rst static taint analysis ap-
proaches, but lacks precision as it tracks data �ow at the object-level instead of taint-
ing their individual �elds. FlowDroid [11] is more precise in this regard and one of
the most widely used static taint analysis tools. Further approaches include EdgeM-
iner [19], which addresses the issue of reconstructing implicit control �ow transi-
tions, and Amandroid [94] and IccTA [59], which deal with inter-component instead
of just intra-component data leaks. MorphDroid [37] argues that conventional data
�ow tracking approaches are too coarse-grained, and tracks atomic units of private in-
formation instead of the complete information (i.e., longitude and latitude instead of
the location) to account for partial leaks. AppIntent [103] proposes to distinguish be-
tween user-intended and covert data leaks and uses symbolic execution to determine
if a privacy leak is a result of user interaction. AppAudit [101] addresses the false
positives of related static analysis approaches and veri�es the detected leaks through
approximated execution of the corresponding functions.

Dynamic taint analysis tracks information �ow between sources of private infor-
mation and sinks, e.g., the network, during runtime, either by modifying the device
OS (TaintDroid [29]), the platform libraries (Phosphor [13]), or the app under analysis
(Uranine [72]). AppFence [46] extends TaintDroid to detect obfuscated and encrypted
leaks, and also performed a small-scale study on the format of leaks, but only found
the ad library Flurry leaking data in non-human readable format in 2011— a situation
that has drastically changed since then as we showed in our study. BayesDroid [91] is
similar to TaintDroid, but addresses the problem of partial information leaks. It com-
3 http://www.inmobi.com/privacy-policy/

78

http://www.inmobi.com/privacy-policy/

4.7. Related Work

pares tainted data tracked from a source of private information to a network sink, and
uses probabilistic reasoning to classify a leak based on the similarity between the data
at both points. While aforementioned approaches only track data �ow in the Dalvik
VM, there also exist approaches that also can track data �ow in native code: Droid-
Scope [102] and CopperDroid [90] perform full system emulation and inspect both an
app’s Dalvik and native code for the purpose of malware analysis, while the recent
TaintART extends TaintDroid to native code [87]. However, ultimately, taint anal-
ysis approaches are vulnerable to apps deliberately disrupting the data �ow: Scrub-
Droid [77] discusses how dynamic taint analysis systems for example can be defeated
by relying on control dependencies (which related approaches usually do not track),
or by writing and reading a value to and from system commands or the �le system.

Most recently, related work has explored detecting privacy leaks at the network
level, usually through network tra�c redirection by routing a device’s tra�c through
a virtual private network (VPN) tunnel and inspecting it for privacy leaks on the �y.
Tools such as PrivacyGuard [82], AntMonitor [57], and Haystack [73], perform their
analysis on-device using Android’s built-in VPNService, but rely on hardcoded iden-
ti�ers, or simply grep for a user’s private information. Liu et al. [62] inspect network
tra�c at the ISP-level and identify private information leaks based on keys generated
from manual analysis and regular expressions. Encryption and obfuscation are out
of scope of the analysis, as the authors assume this scenario is only a concern for
malware. ReCon [74] is another VPN-based approach, which uses a machine learning
classi�er to identify leaks and can deal with simple obfuscation. In the end, it relies
on the data on which it is trained on—which can come from manual analysis and dy-
namic taint analysis tools—and it could bene�t from a technique such as Agrigento
to deal with more complex obfuscation techniques.

Information leakage is not a new problem and not unique to Android apps: related
work on desktop applications has focused on identifying (accidental) leaks of private
information through di�erential analysis at the process-level. TightLip [105] and Croft
et al. [26] perform di�erential analysis on the output of two processes, one with access
to private data, and one without. Both consider timestamp-related information and
random seeds as sources of non-determinism and share them between processes. Ul-
timately, their main goal is to prohibit the accidental leakage of private information,
more speci�cally, sensitive �les, and not obfuscated content. To this end, TightLip
checks if the system call sequences and arguments of the two processes diverge when
the private input changes, and consequently raises an alarm if the output is sent to a
network sink. In contrast, Croft et al. only allow the output of the process without
access to private information to leave the internal company network. The approach
of Privacy Oracle [48] is related to Agrigento: it identi�es privacy leaks based on
divergences in the network tra�c when private input sources are modi�ed. However,
it mainly addresses non-determinism at the OS-level (i.e., performing deterministic
executions using OS snapshots) and does not consider non-determinism in network
tra�c. In fact, it cannot handle random tokens in the network tra�c, nor encryption,
and produces false positives when messages in network �ows are reordered between
executions.

Finally, Shu et al. [80] propose a sequence alignment algorithm for the detection of
obfuscated leaks in �les and network tra�c, which assigns scores based on the amount

79

Chapter 4. Detecting Obfuscated Privacy Leaks in Mobile Applications

of private information they contain. While this approach focuses on the detection of
obfuscated leaks, it explicitly does not address intentional or malicious leaks, and only
considers character replacement, string insertion and data truncation.

In contrast to related work, we are the �rst to address the topic of obfuscation of
privacy leaks in order to deal with adversaries, i.e., apps or ad libraries actively trying
to hide the fact that they are leaking information. As we have shown in our evaluation,
this is a very realistic threat scenario and a practice that is already common amongst
popular mobile apps and ad libraries.

4.8 Concluding Remarks

We showed that while many di�erent approaches have tackled the topic of privacy
leak detection in mobile apps, it is still relatively easy for app and ad library develop-
ers to hide their information leaks from state-of-the-art tools using di�erent types of
encoding, formatting, and cryptographic algorithms. This chapter introduced Agri-
gento, a new approach that is resilient to such obfuscations and, in fact, to any arbi-
trary transformation performed on the private information before it is leaked. Agri-
gento works by performing di�erential black-box analysis on Android apps. We dis-
cussed that while this approach seems intuitive, in practice, we had to overcome sev-
eral key challenges related to the non-determinism inherent to mobile app network
tra�c.

One key insight of this work is that non-determinism in network tra�c can be often
explained and removed. This observation allowed us to develop novel techniques to
address the various sources of non-determinism and it allowed us to conservatively
�ag any deviations in the network tra�c as potential privacy leaks. In our evaluation
on 1,004 Android apps, we showed how Agrigento can detect privacy leaks that
state-of-the-art approaches cannot detect, while, at the same time, only incurring in a
small number of false positives. We further identi�ed interesting cases of custom and
complex obfuscation techniques, which popular ad libraries currently use to ex�ltrate
data without being detected by other approaches.

80

5. Conclusions

In this dissertation we described our e�ort to analyze current software abuses and
propose novel approaches to protect users from such threats. We focused on banking
Trojans, ransomware, and mobile privacy leaks. All these threats share the common
motivation behind cybercriminals modus operandi, which is obtaining �nancial gains
abusing users’ data.

First, we studied banking Trojans, a particular kind of malware that steals bank-
ing credentials by injecting malicious code into the browser and taking control of the
victim’s browser session. We presented Prometheus, a platform that analyzes such
Trojans and extracts robust, behavioral signatures of their malicious behavior. The
produced signatures allow to check, on the client side, whether a web page is cur-
rently being rendered on an infected machine or, more in general, if a page of interest
is targeted by a speci�c sample. We developed a prototype, Iris, which, leveraging
Prometheus’s signatures, automatically detects Man-in-the-Browser attacks that re-
sult in visible DOM modi�cations, independently from the malware implementation.

Second, we focused on ransomware, a large class of malware that encrypts users’
�le and asks for a ransom in order to obtain the decryption key(s) needed to recover
the original �les. We �rst studied how ransomware compares to benign software from
the �lesystem’s viewpoint, in order to identify strong detection criteria. However, we
observed that in some particular scenarios, such as the ransomware one, pure de-
tection approaches are not enough. Instead, we proposed a proactive approach that
equips modern operating systems with self-healing capabilities. Thus, if a �le is sur-
reptitiously altered by one or more malicious processes, the �lesystem presents the
original, mirrored copy to the user space applications. This shadowing mechanism
is dynamically activated and deactivated depending on the outcome of the aforemen-
tioned detection logic. We implemented our approach in ShieldFS, an innovative tool
that makes the Windows native �lesystem immune to ransomware attacks by detect-
ing malicious activities and transparently reverting the e�ects of such attacks. We
evaluated ShieldFS against distinct ransomware families, showing that it can suc-
cessfully protect user data from real-world attacks.

Third, we focused on mobile privacy issues proposing an approach to detect pri-
vacy leaks in an obfuscated-resilient fashion. In fact, while many di�erent approaches
have tackled the topic of privacy leak detection in mobile apps, app and ad library
developers can easily hide their information leaks from state-of-the-art tools using
di�erent types of encoding, formatting, and cryptographic algorithms. Our approach,
Agrigento, is instead based on network black-box di�erential analysis and it is re-
silient to any obfuscation technique. However, trivially applying di�erential analysis
at the network tra�c is not feasible, because of the non-determinism inherent to mo-

81

Chapter 5. Conclusions

bile app network tra�c. One key insight of our research is that we found that this
non-determinism can be often explained and removed. Hence, we proposed novel
techniques to address di�erent sources of non-determinism, making the network dif-
ferential analysis practical. We evaluated Agrigento against popular Android apps
and our experiments showed that there exists several libraries that employ di�erent
encryption and obfuscation techniques to hide the fact they are leaking sensitive in-
formation.

82

Bibliography

[1] UI/Application Exerciser Monkey. https://developer.android.com/studio/test/monkey.html.

[2] Internet users. URL http://www.internetlivestats.com/internet-users/.

[3] JustTrustMe. https://github.com/Fuzion24/JustTrustMe.

[4] mitmproxy. https://mitmproxy.org.

[5] Video demonstration of shieldfs in action. URL https://www.youtube.com/watch?v=0UlgdnQQaLM.

[6] Xposed framework. http://repo.xposed.info.

[7] Unlock the key to repel ransomware. Technical report, Kaspersky Lab, 2015.

[8] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupe, Mario Polino, Paulo de Geus, Christopher
Kruegel, and Giovanni Vigna. Going Native: Using a Large-Scale Analysis of Android Apps to Create a
Practical Native-Code Sandboxing Policy. In Proc. of the ISOC Network and Distributed System Security
Symposium (NDSS), 2016.

[9] Nicoló Andronio, Stefano Zanero, and Federico Maggi. Heldroid: Dissecting and detecting mobile ran-
somware. In Research in Attacks, Intrusions, and Defenses, pages 382–404. Springer, 2015.

[10] Liviu Arsene and Alexandra Gheorghe. Ransomware. a victim’s perspective. Technical report, Bitde-
fender, 2016. URL http://www.bitdefender.com/media/materials/white-papers/en/Bitdefender_
Ransomware_A_Victim_Perspective.pdf.

[11] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps. In Proc. of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2014.

[12] Marshall Beddoe. The Protocol Informatics Project. http://www.4tphi.net/~awalters/PI/PI.html,
2004.

[13] Jonathan Bell and Gail Kaiser. Phosphor: Illuminating Dynamic Data Flow in Commodity JVMs. In Proc.
of the ACM International Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA), 2014.

[14] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit Sinha, Amr Youssef, Mourad Debbabi,
and Lingyu Wang. On the analysis of the zeus botnet crimeware toolkit. In Privacy Security and Trust (PST),
2010 Eighth Annual International Conference on, pages 31–38. IEEE, 2010.

[15] Blueliv. Chasing cybercrime: network insights of dyre and dridex trojan bankers, 2015.

[16] Jean-Ian Boutin. The evolution of webinjects. In Virus Bulletin Conference, 2014.

[17] Robert S. Boyer and J. Strother Moore. A Fast String Searching Algorithm. Commun. ACM, 20(10):762–772,
Oct 1977. ISSN 0001-0782. doi: 10.1145/359842.359859.

[18] Armin Buescher, Felix Leder, and Thomas Siebert. Banksafe information stealer detection inside the web
browser. In Recent Advances in Intrusion Detection, pages 262–280. Springer, 2011.

83

https://developer.android.com/studio/test/monkey.html
http://www.internetlivestats.com/internet-users/
https://github.com/Fuzion24/JustTrustMe
https://mitmproxy.org
https://www.youtube.com/watch?v=0UlgdnQQaLM
http://repo.xposed.info
http://www.bitdefender.com/media/materials/white-papers/en/Bitdefender_Ransomware_A_Victim_Perspective.pdf
http://www.bitdefender.com/media/materials/white-papers/en/Bitdefender_Ransomware_A_Victim_Perspective.pdf
http://www.4tphi.net/~awalters/PI/PI.html

Bibliography

[19] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni Vigna, and
Yan Chen. EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through the Android
Framework. In Proc. of the ISOC Network and Distributed System Security Symposium (NDSS), 2015.

[20] Cisco. Cisco visual networking index: Forecast and methodology, 2016–2021, 2017. URL https://www.
cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.pdf.

[21] Fred Cohen. Computer viruses: theory and experiments. Computers & security, 6(1):22–35, 1987.

[22] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale, Alessandro Barenghi, Ste-
fano Zanero, and Federico Maggi. ShieldFS: A self-healing, ransomware-aware �lesystem. In Proceedings of
the 32nd Annual Computer Security Applications Conference. ACM.

[23] Andrea Continella, Michele Carminati, Mario Polino, Andrea Lanzi, Stefano Zanero, and Federico Maggi.
Prometheus: Analyzing WebInject-based information stealers. Journal of Computer Security, 2017.

[24] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti, Ali Zand, Christopher
Kruegel, and Giovanni Vigna. Obfuscation-Resilient Privacy Leak Detection for Mobile Apps Through Dif-
ferential Analysis. In Proceedings of the ISOC Network and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2017.

[25] Claudio Criscione, Fabio Bosatelli, Stefano Zanero, and Federico Maggi. Zarathustra: Extracting webinject
signatures from banking trojans. In Privacy, Security and Trust (PST), 2014 Twelfth Annual International
Conference on, pages 139–148. IEEE, 2014.

[26] Jason Croft and Matthew Caesar. Towards Practical Avoidance of Information Leakage in Enterprise Net-
works. In Proc. of the USENIX Conference on Hot Topics in Security (HotSec), 2011.

[27] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song. NetworkPro�ler: Towards Automatic Fingerprinting
of Android Apps. In Proc. of the IEEE International Conference on Computer Communications (INFOCOM),
2013.

[28] Gerry Eisenhaur, Michael N. Gagnon, Tufan Demir, and Neil Daswani. Mobile Malware Madness, and How
to Cap the Mad Hatters. A Preliminary Look at Mitigating Mobile Malware. In Black Hat USA (BH-US), 2011.

[29] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: An Information-�ow Tracking System for Realtime Privacy Monitoring on Smart-
phones. In Proc. of the USENIX Conference on Operating Systems Design and Implementation (OSDI), 2010.

[30] Nicolas Falliere and Eric Chien. Zeus: King of the bots. Symantec Security Response (http://bit. ly/3VyFV1),
2009.

[31] Aristide Fattori, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. Hypervisor-based malware protection
with accessminer. Computers & Security, 52:33–50, 2015.

[32] FBI. The fraud scheme, 2010. URL http://www.fbi.gov/news/stories/2010/october/
cyber-banking-fraud.

[33] FBI. Criminals continue to defraud and extort funds from victims using cryptowall ransomware schemes,
2015. URL http://www.ic3.gov/media/2015/150623.aspx.

[34] Federal Trade Commission. FTC Approves Final Order Settling Charges Against Flash-
light App Creator. https://www.ftc.gov/news-events/press-releases/2014/04/
ftc-approves-final-order-settling-charges-against-flashlight-app, April 2014.

[35] Federal Trade Commission. Two App Developers Settle FTC Charges They Violated Children’s
Online Privacy Protection Act. https://www.ftc.gov/news-events/press-releases/2015/12/
two-app-developers-settle-ftc-charges-they-violated-childrens, December 2015.

[36] Federal Trade Commission. Mobile Advertising Network InMobi Settles FTC
Charges It Tracked Hundreds of Millions of Consumers’ Locations With-
out Permission. https://www.ftc.gov/news-events/press-releases/2016/06/
mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked, June 2016.

84

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
http://www.fbi.gov/news/stories/2010/october/cyber-banking-fraud.
http://www.fbi.gov/news/stories/2010/october/cyber-banking-fraud.
http://www.ic3.gov/media/2015/150623.aspx
https://www.ftc.gov/news-events/press-releases/2014/04/ftc-approves-final-order-settling-charges-against-flashlight-app
https://www.ftc.gov/news-events/press-releases/2014/04/ftc-approves-final-order-settling-charges-against-flashlight-app
https://www.ftc.gov/news-events/press-releases/2015/12/two-app-developers-settle-ftc-charges-they-violated-childrens
https://www.ftc.gov/news-events/press-releases/2015/12/two-app-developers-settle-ftc-charges-they-violated-childrens
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked

Bibliography

[37] Pietro Ferrara, Omer Tripp, and Marco Pistoia. MorphDroid: Fine-grained Privacy Veri�cation. In Proc. of
the Annual Computer Security Applications Conference (ACSAC), 2015.

[38] Michael N. Gagnon. Hashing IMEI numbers does not protect privacy. http://blog.dasient.com/2011/
07/hashing-imei-numbers-does-not-protect.html, 2011.

[39] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. AndroidLeaks: Automatically Detecting
Potential Privacy Leaks in Android Applications on a Large Scale. In Proc. of the International Conference on
Trust and Trustworthy Computing (TRUST), 2012.

[40] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. RERAN: Timing- and Touch-Sensitive
Record and Replay for Android. In Proc. of the International Conference on Software Engineering (ICSE), 2013.

[41] Max Goncharov. Russian underground 101. Trend Micro incorporated research paper, page 51, 2012.

[42] Google. AdMob Behavioral Policies. https://support.google.com/admob/answer/2753860?hl=en,
2016.

[43] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J Dietrich, Kirill Levchenko, Panayiotis
Mavrommatis, Damon McCoy, Antonio Nappa, Andreas Pitsillidis, et al. Manufacturing compromise: the
emergence of exploit-as-a-service. In Proceedings of the 2012 ACM conference on Computer and communica-
tions security, pages 821–832. ACM, 2012.

[44] Shay Gueron. Intel advanced encryption standard (aes) new instructions set. Technical re-
port, Intel, 2012. URL https://software.intel.com/sites/default/files/article/165683/
aes-wp-2012-09-22-v01.pdf.

[45] Mario Heiderich, Tilman Frosch, and Thorsten Holz. Iceshield: Detection and mitigation of malicious web-
sites with a frozen dom. In Recent Advances in Intrusion Detection, pages 281–300. Springer, 2011.

[46] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall. "These Aren’t the
Droids You’re Looking For": Retro�tting Android to Protect Data from Imperious Applications. In Proc. of
the ACM Conference on Computer and Communications Security (CCS), 2011.

[47] Microsoft Inc. File system mini�lter drivers, 2014. URL https://msdn.microsoft.com/en-us/library/
windows/hardware/ff540402(v=vs.85).aspx.

[48] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maganis, and Tadayoshi Kohno. Pri-
vacy Oracle: A System for Finding Application Leaks with Black Box Di�erential Testing. In Proc. of the
ACM Conference on Computer and Communications Security (CCS), 2008.

[49] Amin Kharaz, Sajjad Arshad, Collin Mulliner, William Robertson, and Engin Kirda. Unveil: A large-scale,
automated approach to detecting ransomware. In 25th USENIX Security Symposium (USENIX Security 16),
pages 757–772, Austin, TX, 2016. USENIX Association. ISBN 978-1-931971-32-4.

[50] Loucif Kharouni. Automating Online Banking Fraud, 2012.

[51] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin Kirda. Cutting the gordian knot:
A look under the hood of ransomware attacks. In Detection of Intrusions and Malware, and Vulnerability
Assessment: 12th International Conference, DIMVA 2015, Milan, Italy, July 9-10, 2015, Proceedings, volume
9148, page 3. Springer, 2015.

[52] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barebox: e�cient malware analysis on bare-metal.
In Proceedings of the 27th Annual Computer Security Applications Conference. ACM, 2011.

[53] Vadim Kotov and Mantej Singh Rajpal. Understanding crypto-ransomware: In-depth analysis of the most
popular malware families. Technical report, Bromium, 2014.

[54] Brian Krebs. The equifax breach: What you should know, 2017. URL https://krebsonsecurity.com/
2017/09/the-equifax-breach-what-you-should-know/.

[55] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu, and Engin Kirda. Accessminer:
using system-centric models for malware protection. In Proceedings of the 17th ACM conference on Computer
and communications security, pages 399–412. ACM, 2010.

85

http://blog.dasient.com/2011/07/hashing-imei-numbers-does-not-protect.html
http://blog.dasient.com/2011/07/hashing-imei-numbers-does-not-protect.html
https://support.google.com/admob/answer/2753860?hl=en
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402(v=vs.85).aspx
https://krebsonsecurity.com/2017/09/the-equifax-breach-what-you-should-know/
https://krebsonsecurity.com/2017/09/the-equifax-breach-what-you-should-know/

Bibliography

[56] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu, and Engin Kirda. Accessminer:
using system-centric models for malware protection. In Proceedings of the 17th ACM conference on Computer
and communications security, pages 399–412. ACM, 2010.

[57] Anh Le, Janus Varmarken, Simon Langho�, Anastasia Shuba, Minas Gjoka, and Athina Markopoulou.
AntMonitor: A System for Monitoring from Mobile Devices. In Proc. of the ACM SIGCOMM Workshop
on Crowdsourcing and Crowdsharing of Big Internet Data (C2BID), 2015.

[58] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. Automated identi�cation of cryptographic
primitives in binary code with data �ow graph isomorphism. In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, pages 203–214. ACM, 2015.

[59] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick McDaniel. IccTA: Detecting Inter-Component Privacy
Leaks in Android Apps. In Proc. of the International Conference on Software Engineering (ICSE), 2015.

[60] Martina Lindorfer, Alessandro Di Federico, Federico Maggi, Paolo Milani Comparetti, and Stefano Zanero.
Lines of malicious code: insights into the malicious software industry. In Proceedings of the 28th Annual
Computer Security Applications Conference, pages 349–358. ACM, 2012.

[61] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratantonio, Victor van der
Veen, and Christian Platzer. Andrubis - 1,000,000 Apps Later: A View on Current Android Malware Behav-
iors. In Proc. of the International Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security (BADGERS), 2014.

[62] Yabing Liu, Han Hee Song, Ignacio Bermudez, Alan Mislove, Mario Baldi, and Alok Tongaonkar. Identifying
Personal Information in Internet Tra�c. In Proc. of the ACM Conference on Online Social Networks (COSN),
2015.

[63] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. Attacks on WebView in the Android System.
In Proc. of the Annual Computer Security Applications Conference (ACSAC), 2011.

[64] Trend Micro. Ransomware bill seeks to curb the extortion malware epidemic, 2016. URL
http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/
ransomware-bill-curb-the-extortion-malware-epidemic.

[65] Saul B Needleman and Christian D Wunsch. A General Method Applicable to Search for Similarities in
Amino Acid Sequence of Two Proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

[66] Mariani Nicola, Continella Andrea, Pogliani Marcello, Carminati Michele, Maggi Federico, and Zanero Ste-
fano. Poster: Detecting webinjects through live memory inspection. IEEE Symposium on Security and Privacy
(S&P), 2017.

[67] Thomas Ormerod. An Analysis of a Botnet Toolkit and a Framework for a Defamation Attack. PhD thesis,
Concordia University, 2012.

[68] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis, and Sotiris Ioannidis.
Rage Against the Virtual Machine: Hindering Dynamic Analysis of Android Malware. In Proc. of the Euro-
pean Workshop on System Security (EuroSec), 2014.

[69] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna. Execute
This! Analyzing Unsafe and Malicious Dynamic Code Loading in Android Applications, 2014.

[70] Ashkan Rahimian, Raha Ziarati, Stere Preda, and Mourad Debbabi. On the reverse engineering of the citadel
botnet. In Foundations and Practice of Security, pages 408–425. Springer, 2014.

[71] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: Automatic Security Analysis of Smart-
phone Applications. In Proc. of the ACMConference on Data and Application Security and Privacy (CODASPY),
2013.

[72] Vaibhav Rastogi, Zhengyang Qu, Jedidiah McClurg, Yinzhi Cao, Yan Chen, Weiwu Zhu, and Wenzhi Chen.
Uranine: Real-time Privacy Leakage Monitoring without System Modi�cation for Android. In Proc. of the
International Conference on Security and Privacy in Communication Networks (SecureComm), 2015.

86

http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-bill-curb-the-extortion-malware-epidemic
http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-bill-curb-the-extortion-malware-epidemic

Bibliography

[73] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian Kreibich, Phillipa Gill,
Mark Allman, and Vern Paxson. Haystack: In Situ Mobile Tra�c Analysis in User Space. arXiv preprint
arXiv:1510.01419, 2015.

[74] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Cho�nes. ReCon: Revealing and
Controlling PII Leaks in Mobile Network Tra�c. In Proc. of the International Conference on Mobile Systems,
Applications and Services (MobiSys), 2016.

[75] Marco Riccardi, Roberto Di Pietro, and Jorge Aguila Vila. Taming zeus by leveraging its own crypto internals.
In eCrime Researchers Summit (eCrime), 2011, pages 1–9. IEEE, 2011.

[76] Christian Rossow, Christian J Dietrich, Chris Grier, Christian Kreibich, Vern Paxson, Norbert Pohlmann,
Herbert Bos, and Maarten Van Steen. Prudent practices for designing malware experiments: Status quo and
outlook. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 65–79. IEEE, 2012.

[77] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Mohamed˜Ali Kaafar. On the E�ectiveness of Dynamic
Taint Analysis for Protecting Against Private Information Leaks on Android-based Devices. In Proc. of the
International Conference on Security and Cryptography (SECRYPT), 2013.

[78] Kevin Savage, Peter Coogan, and Hon Lau. The evolution of ransomware. Technical report, Symantec, 2015.

[79] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin RB Butler. Cryptolock (and drop it): Stopping
ransomware attacks on user data. In 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2016.

[80] X. Shu, J. Zhang, D. D. Yao, and W. C. Feng. Fast Detection of Transformed Data Leaks. IEEE Transactions
on Information Forensics and Security, 11(3):528–542, March 2016.

[81] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan, Jaspreet Bhatia, Travis D.
Breaux, and Jianwei Niu. Toward a Framework for Detecting Privacy Policy Violations in Android Applica-
tion Code. In Proc. of the International Conference on Software Engineering (ICSE), 2016.

[82] Yihang Song and Urs Hengartner. PrivacyGuard: A VPN-based Platform to Detect Information Leakage on
Android Devices. In Proc. of the Annual ACM CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM), 2015.

[83] Aditya K Sood, Richard J Enbody, and Rohit Bansal. Dissecting spyeye–understanding the design of third
generation botnets. Computer Networks, 57(2):436–450, 2013.

[84] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. Financial Cryptography and Data Security: 18th
International Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers, chapter
BitIodine: Extracting Intelligence from the Bitcoin Network, pages 457–468. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014. ISBN 978-3-662-45472-5. doi: 10.1007/978-3-662-45472-5_29.

[85] Abhinav Srivastava, Andrea Lanzi, Jonathon Gi�n, and Davide Balzarotti. Operating system interface ob-
fuscation and the revealing of hidden operations. Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 214–233, 2011.

[86] Doherty Stephen, Krysiuk Piotr, and Wueest Candid. The state of �nancial trojans 2013, 2013. URL
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/
the_state_of_financial_trojans_2013.pdf.

[87] Mingshen Sun, Tao Wei, and Lui John. TaintART: A Practical Multi-level Information-Flow Tracking System
for Android RunTime. In Proc. of the ACMConference on Computer and Communications Security (CCS), 2016.

[88] Symantec. Dyre: Emerging threat on �nancial fraud landscape, 2015.

[89] Symantec. Internet security threat report 2017, 2017. URL https://s1.q4cdn.com/585930769/files/
doc_downloads/lifelock/ISTR22_Main-FINAL-APR24.pdf.

[90] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. CopperDroid: Automatic Re-
construction of Android Malware Behaviors. In Proc. of the ISOC Network and Distributed System Security
Symposium (NDSS), 2015.

87

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_state_of_financial_trojans_2013.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_state_of_financial_trojans_2013.pdf
https://s1.q4cdn.com/585930769/files/doc_downloads/lifelock/ISTR22_Main-FINAL-APR24.pdf
https://s1.q4cdn.com/585930769/files/doc_downloads/lifelock/ISTR22_Main-FINAL-APR24.pdf

Bibliography

[91] Omer Tripp and Julia Rubin. A Bayesian Approach to Privacy Enforcement in Smartphones. In Proc. of the
USENIX Security Symposium, 2014.

[92] Timothy Vidas and Nicolas Christin. Evading Android Runtime Analysis via Sandbox Detection. In Proc. of
the ACM Symposium on Information, Computer and Communications Security (ASIACCS), 2014.

[93] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection systems. In Proceedings
of the 9th ACM Conference on Computer and Communications Security, pages 255–264. ACM, 2002.

[94] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A Precise and General Inter-component
Data Flow Analysis Framework for Security Vetting of Android Apps. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), 2014.

[95] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel, and Engin Kirda. Automatic Network
Protocol Analysis. In Proc. of the ISOC Network and Distributed System Security Symposium (NDSS), 2008.

[96] Tobias Wüchner, Martín Ochoa, and Alexander Pretschner. Robust and e�ective malware detection through
quantitative data �ow graph metrics. In Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 98–118. Springer, 2015.

[97] Candid Wueest. The state of �nancial Trojans 2014, 2014.

[98] Candid Wueest. Financial threats review 2017, 2017. URL https://www.symantec.com/content/dam/
symantec/docs/security-center/white-papers/istr-financial-threats-review-2017-en.pdf.

[99] James Wyke. Vawtrak - International Crimeware-as-a-Service, 2014.

[100] James Wyke. Breaking the bank(er): automated con�guration data extraction for banking mal-
ware, 2015. URL https://www.sophos.com/en-us/medialibrary/PDFs/technicalpapers/
sophos-wyke-breaking-the-bank-VB2015.pdf.

[101] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu. E�ective Real-time Android Application
Auditing. In Proc. of the IEEE Symposium on Security and Privacy (S&P), 2015.

[102] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views
for Dynamic Android Malware Analysis. In Proc. of the USENIX Security Symposium, 2012.

[103] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang. AppIntent: Analyzing
Sensitive Data Transmission in Android for Privacy Leakage Detection. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), 2013.

[104] Adam Young and Moti Yung. Cryptovirology: Extortion-based security threats and countermeasures. In
Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pages 129–140. IEEE, 1996.

[105] Aydan R Yumerefendi, Benjamin Mickle, and Landon P Cox. TightLip: Keeping Applications from Spilling
the Beans. In Proc. of the USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2007.

[106] Bu Zheng, Bueno Pedro, Kashyap Rahul, and Wosotowsky Adam. The new era of botnets, 2013.

[107] Chaoshun Zuo, Wubing Wang, Rui Wang, and Zhiqiang Lin. Automatic Forgery of Cryptographically Con-
sistent Messages to Identify Security Vulnerabilities in Mobile Services. In Proc. of the ISOC Network and
Distributed System Security Symposium (NDSS), 2016.

88

https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-financial-threats-review-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-financial-threats-review-2017-en.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical papers/sophos-wyke-breaking-the-bank-VB2015.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical papers/sophos-wyke-breaking-the-bank-VB2015.pdf

	Introduction
	Todays' Security Threats
	Original Contributions
	Banking Trojans Analysis and Detection
	Protection from Ransomware Attacks
	Mobile Privacy Leaks Detection

	Document Structure

	Analyzing and Detecting WebInject-based Information Stealers
	Background on Information Stealers
	The underground economy
	Man in the Browser attacks and WebInject

	State of the Art and Research Challenges
	Information Stealers Analysis and Detection

	Approach Overview
	Application Scenarios
	Detecting WebInjects through Live Memory Inspection

	System Design & Implementation
	Phase 1: Data Collection
	Phase 2: Data Processing
	Phase 3: Signatures Generation
	Implementation

	Experimental Results
	Dataset
	Delayed activation
	False Differences discussion
	Missed Differences discussion
	Results of memory analysis
	Performance
	Distributed crawling experiment

	Limitations
	Concluding Remarks

	Protecting from Ransomware Attacks
	Low-Level I/O Data Collection
	Filesystem Sniffer Details
	Ransomware Activity Data Collection
	Filesystem Activity Comparison

	Approach and Methodology
	Ransomware FS Activity Detection
	Cryptographic Primitives Detection
	Automatic File Recovery Workflow

	ShieldFS System Details
	Ransomware FS Activity Detection
	Cryptographic Primitives Detection
	Automatic File Recovery

	Experimental Results
	Detection Accuracy
	Protection of Production Machines
	Detection and Recovery Capabilities
	System Overhead

	Discussion of Limitations
	Related Works
	Concluding Remarks

	Detecting Obfuscated Privacy Leaks in Mobile Applications
	Motivation
	Sources of Non-Determinism
	Approach
	Network Behavior Summary Extraction
	Differential Analysis

	System Details
	Apps Environment Instrumentation
	Network Setup
	Network Behavior Summary
	Modifying Sources of Private Information
	Differential Analysis
	Risk Analysis

	Experimental Results
	Experiment Setup
	Datasets
	Characterizing Non-Determinism in Network Traffic
	Comparison with Existing Tools
	Privacy Leaks in Popular Apps
	Case Studies
	Performance Evaluation

	Limitations and Future Work
	Related Work
	Concluding Remarks

	Conclusions
	Bibliography

